Asymptotic Speedups for Free through Automatic Incremental Computing

The AutoInc project aims to enhance energy and time efficiency in software by developing a methodology for automatic incremental computing through a library of operators, an intermediate representation, and an optimizing compiler.

Subsidie
€ 1.999.720
2024

Projectdetails

Introduction

The energy consumption of data centers and ICT devices grows at an alarming rate and will be responsible for up to 20% of the global energy consumption by 2030. To sustain the ongoing digital transformation, we must find ways to run software dramatically more efficiently. A promising direction is incremental computing.

Incremental Computing

Incremental computations react to input changes rather than recomputing their result from scratch, which is known to deliver asymptotic speedups in theory and order-of-magnitude speedups in practice. However, current approaches to incrementality have limited applicability:

  1. They either require expert knowledge,
  2. Only support specialized domains (e.g., database queries),
  3. Or only yield modest speedups.

The goal of this project is to develop a methodology for automatically incrementalizing computations and significantly improving their time and energy efficiency.

Project Overview

The AutoInc project achieves this ambitious goal by establishing a novel foundation for incremental computing in three complementary parts:

  1. Incremental Operators: The project develops a library of incremental operators for atomic and other essential data types as part of a novel framework of differential theories, which ensure the correctness and composability of the operators.

  2. Intermediate Representation: The project designs a low-level intermediate representation (IR) for describing compositional incremental computations as computation networks and provides a novel differential recomputing semantics for the IR.

  3. Optimizing Compiler: The project develops an optimizing compiler that translates existing code to the low-level incremental IR and uses operators from differential theories where possible.

Each part is useful in its own right, but together AutoInc enables developers to automatically incrementalize the reactive parts of existing programs.

Expected Outcomes

Besides improving the efficiency of programs, this project will produce fundamental insights about the nature and limits of automatic incremental computing.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.999.720
Totale projectbegroting€ 1.999.720

Tijdlijn

Startdatum1-6-2024
Einddatum31-5-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • JOHANNES GUTENBERG-UNIVERSITAT MAINZpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC Advanced...

ANalogue In-Memory computing with Advanced device TEchnology

The project aims to develop closed-loop in-memory computing (CL-IMC) technology to significantly reduce energy consumption in data processing while maintaining high computational efficiency.

€ 2.498.868
ERC Starting...

Federated and distributed inference leveraging sensing and communication in the computing continuum

This project aims to develop a framework for federated and distributed inference systems that optimizes sensing data processing across edge and cloud environments, enhancing efficiency, security, and performance.

€ 1.019.000
ERC Consolid...

Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena

The project aims to revolutionize numerical simulation and animation by integrating analytical tools, data-driven insights, and optimization techniques to efficiently model complex physical systems.

€ 1.936.503
ERC Advanced...

Analog Photonic Computation

ANBIT aims to develop Analog Photonic Computation (APC) to leverage programmable integrated photonics for efficient real-time analog processing in various applications.

€ 2.491.250
ERC Consolid...

Advanced Numerics for Uncertainty and Bayesian Inference in Science

ANUBIS aims to enhance quantitative scientific analysis by unifying probabilistic numerical methods with machine learning and simulation, improving efficiency and uncertainty management in data-driven insights.

€ 1.997.250

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

Simulatie optimalisatie door middel van een data-driven preconditioner

Dit project onderzoekt de haalbaarheid van een data-driven preconditioner om complexe simulaties te optimaliseren en kosten te verlagen.

€ 20.000
EIC Pathfinder

n-ary spintronics-based edge computing co-processor for artificial intelligence

MultiSpin.AI aims to revolutionize edge computing by developing a neuromorphic AI co-processor that enhances energy efficiency and processing speed, enabling transformative applications while reducing CO2 emissions.

€ 3.143.276
Mkb-innovati...

Reinforcement Learning & Solver Racing in simulatieversnellingen

Het project onderzoekt het gebruik van reinforcement learning en solver racing om de efficiëntie van computersimulaties te verbeteren.

€ 20.000
Mkb-innovati...

Power Regenerate

Power Regenerate ontwikkelt een cycler die ontlaadenergie van batterijen hergebruikt, wat kosten en milieu-impact vermindert.

€ 105.000
Mkb-innovati...

Generatieve machine learning voor energiebesparing in datacentra

Coolgradient en Syntho ontwikkelen een softwareplatform dat synthetische sensordata genereert voor datacentra, om energieverbruik te optimaliseren en kosten te verlagen, ter ondersteuning van klimaatdoelstellingen.

€ 226.590