Asymptotic Speedups for Free through Automatic Incremental Computing
The AutoInc project aims to enhance energy and time efficiency in software by developing a methodology for automatic incremental computing through a library of operators, an intermediate representation, and an optimizing compiler.
Projectdetails
Introduction
The energy consumption of data centers and ICT devices grows at an alarming rate and will be responsible for up to 20% of the global energy consumption by 2030. To sustain the ongoing digital transformation, we must find ways to run software dramatically more efficiently. A promising direction is incremental computing.
Incremental Computing
Incremental computations react to input changes rather than recomputing their result from scratch, which is known to deliver asymptotic speedups in theory and order-of-magnitude speedups in practice. However, current approaches to incrementality have limited applicability:
- They either require expert knowledge,
- Only support specialized domains (e.g., database queries),
- Or only yield modest speedups.
The goal of this project is to develop a methodology for automatically incrementalizing computations and significantly improving their time and energy efficiency.
Project Overview
The AutoInc project achieves this ambitious goal by establishing a novel foundation for incremental computing in three complementary parts:
-
Incremental Operators: The project develops a library of incremental operators for atomic and other essential data types as part of a novel framework of differential theories, which ensure the correctness and composability of the operators.
-
Intermediate Representation: The project designs a low-level intermediate representation (IR) for describing compositional incremental computations as computation networks and provides a novel differential recomputing semantics for the IR.
-
Optimizing Compiler: The project develops an optimizing compiler that translates existing code to the low-level incremental IR and uses operators from differential theories where possible.
Each part is useful in its own right, but together AutoInc enables developers to automatically incrementalize the reactive parts of existing programs.
Expected Outcomes
Besides improving the efficiency of programs, this project will produce fundamental insights about the nature and limits of automatic incremental computing.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.999.720 |
Totale projectbegroting | € 1.999.720 |
Tijdlijn
Startdatum | 1-6-2024 |
Einddatum | 31-5-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- JOHANNES GUTENBERG-UNIVERSITAT MAINZpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
ANalogue In-Memory computing with Advanced device TEchnologyThe project aims to develop closed-loop in-memory computing (CL-IMC) technology to significantly reduce energy consumption in data processing while maintaining high computational efficiency. | ERC Advanced... | € 2.498.868 | 2023 | Details |
Federated and distributed inference leveraging sensing and communication in the computing continuumThis project aims to develop a framework for federated and distributed inference systems that optimizes sensing data processing across edge and cloud environments, enhancing efficiency, security, and performance. | ERC Starting... | € 1.019.000 | 2023 | Details |
Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural PhenomenaThe project aims to revolutionize numerical simulation and animation by integrating analytical tools, data-driven insights, and optimization techniques to efficiently model complex physical systems. | ERC Consolid... | € 1.936.503 | 2022 | Details |
Analog Photonic ComputationANBIT aims to develop Analog Photonic Computation (APC) to leverage programmable integrated photonics for efficient real-time analog processing in various applications. | ERC Advanced... | € 2.491.250 | 2023 | Details |
Advanced Numerics for Uncertainty and Bayesian Inference in ScienceANUBIS aims to enhance quantitative scientific analysis by unifying probabilistic numerical methods with machine learning and simulation, improving efficiency and uncertainty management in data-driven insights. | ERC Consolid... | € 1.997.250 | 2024 | Details |
ANalogue In-Memory computing with Advanced device TEchnology
The project aims to develop closed-loop in-memory computing (CL-IMC) technology to significantly reduce energy consumption in data processing while maintaining high computational efficiency.
Federated and distributed inference leveraging sensing and communication in the computing continuum
This project aims to develop a framework for federated and distributed inference systems that optimizes sensing data processing across edge and cloud environments, enhancing efficiency, security, and performance.
Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena
The project aims to revolutionize numerical simulation and animation by integrating analytical tools, data-driven insights, and optimization techniques to efficiently model complex physical systems.
Analog Photonic Computation
ANBIT aims to develop Analog Photonic Computation (APC) to leverage programmable integrated photonics for efficient real-time analog processing in various applications.
Advanced Numerics for Uncertainty and Bayesian Inference in Science
ANUBIS aims to enhance quantitative scientific analysis by unifying probabilistic numerical methods with machine learning and simulation, improving efficiency and uncertainty management in data-driven insights.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Simulatie optimalisatie door middel van een data-driven preconditionerDit project onderzoekt de haalbaarheid van een data-driven preconditioner om complexe simulaties te optimaliseren en kosten te verlagen. | Mkb-innovati... | € 20.000 | 2021 | Details |
n-ary spintronics-based edge computing co-processor for artificial intelligenceMultiSpin.AI aims to revolutionize edge computing by developing a neuromorphic AI co-processor that enhances energy efficiency and processing speed, enabling transformative applications while reducing CO2 emissions. | EIC Pathfinder | € 3.143.276 | 2024 | Details |
Reinforcement Learning & Solver Racing in simulatieversnellingenHet project onderzoekt het gebruik van reinforcement learning en solver racing om de efficiëntie van computersimulaties te verbeteren. | Mkb-innovati... | € 20.000 | 2024 | Details |
Power RegeneratePower Regenerate ontwikkelt een cycler die ontlaadenergie van batterijen hergebruikt, wat kosten en milieu-impact vermindert. | Mkb-innovati... | € 105.000 | 2020 | Details |
Generatieve machine learning voor energiebesparing in datacentraCoolgradient en Syntho ontwikkelen een softwareplatform dat synthetische sensordata genereert voor datacentra, om energieverbruik te optimaliseren en kosten te verlagen, ter ondersteuning van klimaatdoelstellingen. | Mkb-innovati... | € 226.590 | 2023 | Details |
Simulatie optimalisatie door middel van een data-driven preconditioner
Dit project onderzoekt de haalbaarheid van een data-driven preconditioner om complexe simulaties te optimaliseren en kosten te verlagen.
n-ary spintronics-based edge computing co-processor for artificial intelligence
MultiSpin.AI aims to revolutionize edge computing by developing a neuromorphic AI co-processor that enhances energy efficiency and processing speed, enabling transformative applications while reducing CO2 emissions.
Reinforcement Learning & Solver Racing in simulatieversnellingen
Het project onderzoekt het gebruik van reinforcement learning en solver racing om de efficiëntie van computersimulaties te verbeteren.
Power Regenerate
Power Regenerate ontwikkelt een cycler die ontlaadenergie van batterijen hergebruikt, wat kosten en milieu-impact vermindert.
Generatieve machine learning voor energiebesparing in datacentra
Coolgradient en Syntho ontwikkelen een softwareplatform dat synthetische sensordata genereert voor datacentra, om energieverbruik te optimaliseren en kosten te verlagen, ter ondersteuning van klimaatdoelstellingen.