Analog Photonic Computation

ANBIT aims to develop Analog Photonic Computation (APC) to leverage programmable integrated photonics for efficient real-time analog processing in various applications.

Subsidie
€ 2.491.250
2023

Projectdetails

Introduction

For over 5 decades, digital electronics has covered the increasing demand for computing power thanks to a periodic doubling of transistor density in integrated circuits. Currently, such scaling law is reaching its fundamental limit, leading to the emergence of a large gamut of applications that cannot be supported by digital electronics, specifically, those that involve real-time analog multi-data processing, e.g., medical diagnostic imaging, drug design, and robotic control, among others.

Analog Computing Approach

Here, an analog computing approach implemented in a reconfigurable non-electronic technology such as programmable integrated photonics (PIP) can be more efficient than digital electronics to perform these emerging applications. However, actual computing models were not conceived to extract the benefits of PIP.

Project Aim

The aim of ANBIT is to develop an entirely new class of computation theory – termed Analog Photonic Computation (APC) – specifically designed to unleash the full potential of PIP technology. The core concept revolves around the idea of performing analog operations on a new unit of information, the analog bit or anbit, conceived as a two-dimensional analog function and matched to the building block of PIP circuits.

Objectives

ANBIT will reach its objectives by:

  1. Developing the theory of APC based on operations (gates) of anbits.
  2. Translating the principles of APC to the design of PIP circuits by concatenating single- and multi-anbit gates.
  3. Fabricating, packaging, testing, and validating silicon PIP chips capable of implementing complex APC architectures.
  4. Designing, coordinating, setting, and performing experiments that will prove the unique potential of APC in computational and signal processing applications with huge takeover.

Impact

ANBIT will deliver a new computing paradigm that extracts the full potential of PIP technology, which in turn will have a crucial impact on fundamental and applied research and on our information society.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.491.250
Totale projectbegroting€ 2.491.250

Tijdlijn

Startdatum1-9-2023
Einddatum31-8-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • UNIVERSITAT POLITECNICA DE VALENCIApenvoerder

Land(en)

Spain

Vergelijkbare projecten binnen European Research Council

ERC Synergy ...

Active Hybrid Photonic Integrated Circuits for Ultra-Efficient Electro-Optic Conversion and Signal Processing

ATHENS aims to revolutionize electro-optic conversion in photonic integrated circuits by developing advanced materials and integration techniques for enhanced performance in communications and quantum technologies.

€ 13.999.999
ERC Starting...

Large-scale Multicore Smart Photonics: Using advanced design and configuration protocols to develop the largest-scale programmable photonic processor

The project aims to develop a large-scale multicore programmable photonic processor to enhance scalability and performance in integrated photonics for complex neuromorphic computing applications.

€ 1.499.325
ERC Proof of...

Rapid Programmable Photonic Integrated Circuits

This project aims to develop programmable photonic integrated circuits using atomically thin semiconductors for enhanced performance in speed and energy efficiency.

€ 150.000
ERC Proof of...

Non-uniform programmable integrated photonic waveguide meshes

The NP-Mesh project aims to enhance programmable photonic integrated waveguide meshes by embedding defect cells to improve flexibility and performance, leading to new intellectual property and commercialization.

€ 150.000
ERC Advanced...

Optoelectronic and all-optical hyperspin machines for large-scale computing

HYPERSPIM develops ultrafast photonic machines for large-scale combinatorial optimization, enhancing efficiency in classical and quantum computing for complex real-world problems.

€ 2.490.000

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

Nano electro-optomechanical programmable integrated circuits

NEUROPIC aims to develop a programmable photonic chip architecture for diverse applications, leveraging nanoelectromechanical technologies to enhance efficiency and enable neuromorphic computing.

€ 2.999.924
EIC Pathfinder

Photon-Atom Non-linearities and Deterministic Applications via arrays

PANDA aims to develop a photonic quantum computer using neutral rubidium atoms to enable efficient, deterministic photon-photon interactions for advanced quantum information processing applications.

€ 3.984.437
EIC Pathfinder

Quantum Generative Adversarial Networks with phoTonic Integrated Circuits (QuGANTIC)

QuGANTIC aims to develop a scalable quantum computer using quDits on a photonic integrated chip to enhance data processing for critical global challenges, outperforming classical systems.

€ 3.194.262
EIC Pathfinder

Hybrid electronic-photonic architectures for brain-inspired computing

HYBRAIN aims to develop a brain-inspired hybrid architecture combining integrated photonics and unconventional electronics for ultrafast, energy-efficient edge AI inference.

€ 1.672.528
EIC Transition

Innovating iN Smart Programmable IntegRatEd photonics

The INSPIRE project aims to develop and demonstrate programmable photonic processors (FPPGAs) for enhanced computing performance and efficiency, targeting TRL5/6 readiness with three innovative prototypes.

€ 2.453.292