Ultrafast Picoscopy of Solids
The project aims to develop ultrafast picoscopy for real-time visualization of electron dynamics and atomic structures in materials at picometer and attosecond scales, benefiting multiple scientific fields.
Projectdetails
Introduction
Material science, quantum chemistry, electrical and quantum engineering in the 21st century focus on manipulating and harnessing the properties of matter at the level of atoms and electrons. Advancing these technological capabilities to their ultimate limit calls for novel imaging techniques that can allow us to peer into matter at the level of valence electrons and follow their dynamics in space (tens of picometers) and time (femtosecond to attoseconds).
Proposal for Development
Here we propose the development and use of ultrafast picoscopy to attain this grand goal of ultrafast and microscopy sciences. Intense laser fields can drive the coherent motion of electrons inside crystals to emit high harmonics of the fundamental whose spectral characteristics embody critical information about the spatial arrangement of electrons and atoms in the sub-angstrom scale.
Methodology
By combining this capability with state-of-the-art laser pulses whose field waveform is confined to a fraction of a femtosecond (optical attosecond pulses), it should be possible to record movies of electrons in solids in picometer space and attosecond time scales.
Objectives
Ultrafast picoscopy aims at enabling:
- The three-dimensional visualization of the chemical bond in condensed matter.
- The detailed visualization of structural changes in crystalline materials.
- The real-time tracking of atomic and electron motion in ordinary and correlated materials.
Anticipated Benefits
We anticipate the technique and the results of this endeavor to yield benefits to a broad range of scientific disciplines ranging from physics and quantum chemistry to material science and information technology.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.499.000 |
Totale projectbegroting | € 2.499.000 |
Tijdlijn
Startdatum | 1-9-2023 |
Einddatum | 31-8-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- UNIVERSITAET ROSTOCKpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Breaking resolution limits in ultrafast X-ray diffractive imagingThis project aims to enhance spatial resolution in femtosecond X-ray imaging of nanoscale processes by utilizing intense short FEL pulses and advanced reconstruction algorithms for improved photochemistry insights. | ERC STG | € 1.500.000 | 2022 | Details |
Photoemission Orbital Cinematography: An ultrafast wave function labThe project aims to achieve ultrafast cinematography of electron motion in quantum orbitals using advanced techniques, revolutionizing our understanding of condensed matter and its applications. | ERC SyG | € 11.348.614 | 2023 | Details |
Quantum Controlled X-ray Spectroscopy of Elementary Molecular DynamicsQuantXS aims to revolutionize time-resolved X-ray spectroscopy by developing quantum-controlled methods to monitor molecular photochemistry with unprecedented precision. | ERC STG | € 1.401.103 | 2024 | Details |
Quantum Interactions in Photon-Induced Nearfield Electron MicroscopyThis project aims to develop ultrafast free-electron interferometry to measure quantum properties of light and matter, enabling groundbreaking insights into quantum correlations and dynamics. | ERC COG | € 2.500.000 | 2025 | Details |
Breaking resolution limits in ultrafast X-ray diffractive imaging
This project aims to enhance spatial resolution in femtosecond X-ray imaging of nanoscale processes by utilizing intense short FEL pulses and advanced reconstruction algorithms for improved photochemistry insights.
Photoemission Orbital Cinematography: An ultrafast wave function lab
The project aims to achieve ultrafast cinematography of electron motion in quantum orbitals using advanced techniques, revolutionizing our understanding of condensed matter and its applications.
Quantum Controlled X-ray Spectroscopy of Elementary Molecular Dynamics
QuantXS aims to revolutionize time-resolved X-ray spectroscopy by developing quantum-controlled methods to monitor molecular photochemistry with unprecedented precision.
Quantum Interactions in Photon-Induced Nearfield Electron Microscopy
This project aims to develop ultrafast free-electron interferometry to measure quantum properties of light and matter, enabling groundbreaking insights into quantum correlations and dynamics.