SubsidieMeesters logoSubsidieMeesters
ProjectenRegelingenAnalyses

Origami inspired thermoelectric generators by printing and folding

ORTHOGONAL aims to develop cost-effective, scalable thermoelectric generators using printable nanocomposite materials to harvest low-temperature waste heat for powering future sensor devices.

Subsidie
€ 2.410.155
2023

Projectdetails

Introduction

The transition towards an energy-sustainable society is the key challenge for the engineering sciences in the 21st century. This proposal addresses the energy supply for the future trillion sensor devices that form the backbone of our digitized society and it addresses the possibility to recover huge amounts of low-temperature waste heat in industry.

Energy-Harvesting Solution

Energy-harvesting from low-temperature environmental heat via thermoelectric generators (TEG) is a versatile and maintenance-free solution for both challenges. A prerequisite, however, is a cost-effective and scalable materials and manufacturing strategy for such TEGs.

Research Focus

ORTHOGONAL will explore the devices using novel printable thermoelectric nanocomposite materials and it will tackle the fabrication challenges of printed TEGs based on ultrathin (< 2 µm) polymeric foils.

Material Exploration

We will explore:

  1. n-type inorganic printable nanomaterials with high efficiencies
  2. p-type inorganic printable nanomaterials with high efficiencies

These materials will be used for large area 2D printing on ultrathin substrates.

Fabrication Techniques

By using photonic sintering, we will nano-solder the thin TEG films. The TEGs will then subsequently be fabricated by an origami-inspired folding process.

Customized Machine Design

A customized machine will be designed and constructed to allow for an automated folding of the 2D foil into the desired 3D geometry.

Demonstrators

As demonstrators, the project will realize:

  • TEG powered autonomous sensor nodes
  • A heat exchanger including a large area TEG

Experience and Impact

The work will build on my more than 30 years of experience in solid-state semiconductor devices, several key patents from my group, and our recent proof-of-concepts for the thermoelectric materials and the device design.

Broader Applications

The design and fabrication principles of ORTHOGONAL will also be of use for other large-area electronic devices, e.g., X-ray detectors, THz-metamaterials, and piezoelectric transceivers.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.410.155
Totale projectbegroting€ 2.410.155

Tijdlijn

Startdatum1-7-2023
Einddatum30-6-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • KARLSRUHER INSTITUT FUER TECHNOLOGIEpenvoerder

Land(en)

Germany

Inhoudsopgave

European Research Council

Financiering tot €10 miljoen voor baanbrekend frontier-onderzoek via ERC-grants (Starting, Consolidator, Advanced, Synergy, Proof of Concept).

Bekijk regeling

Vergelijkbare projecten binnen European Research Council

ProjectRegelingBedragJaarActie

Powering wearable devices by human heat with highly efficient, flexible, bio-inspired generators

POWERbyU aims to develop high-efficiency, flexible thermoelectric generators using innovative materials and designs to enable self-powered wearable devices and other applications.

ERC Advanced...€ 2.499.266
2022
Details

COOLing for Electricity Production: Battery-free Technology

COOLed aims to develop a battery-free technology using 3D polymer metamaterials and 2D transition metal selenides to generate electricity from cold space for IoT devices in smart cities.

ERC Consolid...€ 2.000.000
2023
Details

COOLing electronic devices with GRAphene ELEctrons

This project aims to demonstrate graphene-electron-based thermal management in electronic devices while developing a business strategy for commercialization.

ERC Proof of...€ 150.000
2022
Details

On-chip energy harvesting and management enabled by Thermal engineering of two-dimensional MAterials

TheMA project aims to develop novel 2D semiconductor nanomaterials for enhanced thermal management and thermoelectric devices, improving energy efficiency in electronics and IoT applications.

ERC Starting...€ 1.500.000
2024
Details

Ferroic Materials for Dynamic Heat Flow Control

This project aims to develop innovative thermal switches and diodes using domain walls in ferroelectric oxides for efficient heat flow control, enhancing sustainable energy applications.

ERC Starting...€ 1.495.000
2023
Details
ERC Advanced...

Powering wearable devices by human heat with highly efficient, flexible, bio-inspired generators

POWERbyU aims to develop high-efficiency, flexible thermoelectric generators using innovative materials and designs to enable self-powered wearable devices and other applications.

ERC Advanced Grant
€ 2.499.266
2022
Details
ERC Consolid...

COOLing for Electricity Production: Battery-free Technology

COOLed aims to develop a battery-free technology using 3D polymer metamaterials and 2D transition metal selenides to generate electricity from cold space for IoT devices in smart cities.

ERC Consolidator Grant
€ 2.000.000
2023
Details
ERC Proof of...

COOLing electronic devices with GRAphene ELEctrons

This project aims to demonstrate graphene-electron-based thermal management in electronic devices while developing a business strategy for commercialization.

ERC Proof of Concept
€ 150.000
2022
Details
ERC Starting...

On-chip energy harvesting and management enabled by Thermal engineering of two-dimensional MAterials

TheMA project aims to develop novel 2D semiconductor nanomaterials for enhanced thermal management and thermoelectric devices, improving energy efficiency in electronics and IoT applications.

ERC Starting Grant
€ 1.500.000
2024
Details
ERC Starting...

Ferroic Materials for Dynamic Heat Flow Control

This project aims to develop innovative thermal switches and diodes using domain walls in ferroelectric oxides for efficient heat flow control, enhancing sustainable energy applications.

ERC Starting Grant
€ 1.495.000
2023
Details

Vergelijkbare projecten uit andere regelingen

ProjectRegelingBedragJaarActie

Meta-Antenna and Energy harvesting/storage modules development for autarkic sensors arrays

METATHERM aims to create a self-sustaining energy harvesting and communication system for sensor arrays using innovative metamaterial antennas and ionic thermoelectric devices.

EIC Transition€ 2.498.710
2022
Details

SeLf-powered self-rEshaping Autarkic skin For wireless motes - LEAF

The project aims to develop a multifunctional, ultrathin foil that integrates 3D reshaping, energy harvesting, and storage to autonomously power silicon chips in various applications.

EIC Pathfinder€ 2.565.321
2025
Details

A paradigm shift for the future's thermal management devices through radical innovation in new materials and additive manufacturing

ThermoDust aims to revolutionize thermal management by developing a novel material using nanotechnology and additive manufacturing for enhanced heat transport in electronics, EVs, and aerospace.

EIC Pathfinder€ 3.275.985
2022
Details

Cooling with Electrocaloric Polymers

This project aims to develop efficient electrocaloric cooling technologies using advanced polymers and capacitors, targeting a 1 kW cooling power and 60% efficiency to revolutionize energy use in cooling systems.

EIC Pathfinder€ 3.781.325
2024
Details

For Tunable Thermochemical Energy Storage

4TunaTES aims to develop a flexible Thermo-Chemical Energy Storage technology that adapts to various applications, reducing R&D costs by 90% and unlocking thermal energy storage potential.

EIC Pathfinder€ 2.779.713
2024
Details
EIC Transition

Meta-Antenna and Energy harvesting/storage modules development for autarkic sensors arrays

METATHERM aims to create a self-sustaining energy harvesting and communication system for sensor arrays using innovative metamaterial antennas and ionic thermoelectric devices.

EIC Transition
€ 2.498.710
2022
Details
EIC Pathfinder

SeLf-powered self-rEshaping Autarkic skin For wireless motes - LEAF

The project aims to develop a multifunctional, ultrathin foil that integrates 3D reshaping, energy harvesting, and storage to autonomously power silicon chips in various applications.

EIC Pathfinder
€ 2.565.321
2025
Details
EIC Pathfinder

A paradigm shift for the future's thermal management devices through radical innovation in new materials and additive manufacturing

ThermoDust aims to revolutionize thermal management by developing a novel material using nanotechnology and additive manufacturing for enhanced heat transport in electronics, EVs, and aerospace.

EIC Pathfinder
€ 3.275.985
2022
Details
EIC Pathfinder

Cooling with Electrocaloric Polymers

This project aims to develop efficient electrocaloric cooling technologies using advanced polymers and capacitors, targeting a 1 kW cooling power and 60% efficiency to revolutionize energy use in cooling systems.

EIC Pathfinder
€ 3.781.325
2024
Details
EIC Pathfinder

For Tunable Thermochemical Energy Storage

4TunaTES aims to develop a flexible Thermo-Chemical Energy Storage technology that adapts to various applications, reducing R&D costs by 90% and unlocking thermal energy storage potential.

EIC Pathfinder
€ 2.779.713
2024
Details

SubsidieMeesters logoSubsidieMeesters

Vind en verken subsidieprojecten in Nederland en Europa.

Links

  • Projecten
  • Regelingen
  • Analyses

Suggesties

Heb je ideeën voor nieuwe features of verbeteringen?

Deel je suggestie
© 2025 SubsidieMeesters. Alle rechten voorbehouden.