Ferroic Materials for Dynamic Heat Flow Control

This project aims to develop innovative thermal switches and diodes using domain walls in ferroelectric oxides for efficient heat flow control, enhancing sustainable energy applications.

Subsidie
€ 1.495.000
2023

Projectdetails

Introduction

Tackling climate change is one of the most pressing challenges of our modern society and requires researching new refrigeration and renewable energy systems. Performances of all these systems could be significantly improved if they were combined with solid-state thermal switches and diodes. Current strategies that require nanostructuring materials or operating in the vicinity of a phase transition lead to thermal switches or thermal diodes with low efficiencies or that are not suitable for applications where space is limited. Furthermore, once designed, the thermal properties of these elements are set and cannot be modified.

Objective

My objective is to investigate a fundamentally new mechanism to design compact and efficient thermal switches and diodes. My strategy exploits, in ferroelectric and ferroelastic oxides, the interactions between phonons and spontaneously occurring planar defects known as domain walls.

Mechanism

Domain walls can be easily generated, moved, and oriented by the application of a small voltage or a small uniaxial pressure, and interact with phonons as defects do. They are thus perfect interfaces to achieve large and reconfigurable anisotropies in thermal conductivities in controlled directions in a fast and reversible way.

Project Development

In this ambitious project, I develop a novel approach to demonstrate dynamic heat flow control through:

  1. The reversible engineering of the density of domain walls in desired directions.
  2. The development of advanced experimental techniques for in-operando thermal characterizations.

Multidisciplinary Strategy

My multidisciplinary strategy will unravel the interactions between phonons and domain walls to reach higher thermal conductivity variations, leading to ground-breaking thermal switches and diodes. These thermal switches and diodes will be compatible with a large range of devices and will have an impact in many fields critical for our transition toward a sustainable future (e.g., solid-state refrigeration, solar panels, thermoelectric devices).

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.495.000
Totale projectbegroting€ 1.495.000

Tijdlijn

Startdatum1-1-2023
Einddatum31-12-2027
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder

Land(en)

France

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC ADG

Layering, Understanding, Controlling and Integrating Ferroelectric Polar Textures on Silicon

The project aims to integrate topological polar textures in nanoscale ferroelectrics onto silicon platforms to enable energy-efficient, ultra-compact electronic devices through advanced engineering techniques.

€ 2.499.960
ERC COG

THERmal MOdulators based on novel 2D mxEne materials for nearly isothermAL battery operation

THERMO2DEAL aims to develop a novel interfacial thermal modulator using MXenes for dynamic heat management in batteries, enhancing performance and lifespan through advanced thermal regulation.

€ 1.988.794