Microbiota-controlled trafficking of immunosuppressive intestinal T cells into cancer
This project aims to uncover the mechanisms by which intestinal microbiota influences immune checkpoint blockade resistance in cancer through MAdCAM-1 regulation and T cell dynamics.
Projectdetails
Introduction
Resistance of cancers to immune checkpoint blockade (ICB) can result from a deviated taxonomic composition of the intestinal microbiota. A surge in the Enterocloster genus, for instance following discontinuation of antibiotics or chronic inflammation caused by tumors, induces the downregulation of MAdCAM-1 in the ileal lamina propria and mesenteric lymph nodes through perturbations of biliary salts.
Mechanism of Action
In turn, the ileal MAdCAM-1 loss induces the exodus of immunosuppressive T lymphocytes expressing the MAdCAM-1 receptor α4β7, i.e., FoxP3+ RAR-related orphan receptor gamma t (RORγt+) regulatory (Tr17) cells, from the gut to distant tumors. Disruption of the MAdCAM-1–α4β7 axis compromises the efficacy of immunotherapy and reprograms the tumor microenvironment towards a regulatory phenotype.
Predictive Biomarker
Moreover, serum soluble MAdCAM-1 is a proxy of intestinal dysbiosis and a robust predictor of survival in cancer patients treated with ICB.
Research Objectives
To decipher the biological significance of these findings, we will first investigate the transcriptional and post-translational mechanisms regulating MAdCAM-1 expression and function (Task 1), in particular neuroendocrine and metabolic cues.
Task 1: Mechanisms of MAdCAM-1 Regulation
- Investigate transcriptional mechanisms.
- Examine post-translational mechanisms.
- Focus on neuroendocrine and metabolic cues.
Next, a comprehensive phenotyping of the emigrating enterotropic T cells reaching the tumor by single cell transcriptomics and genomics, as well as specific genetic and immunopharmacological intervention on T lymphocytes and cancer cells, will lead to the identification of the molecular mechanisms regulating the gut-tumor axis (Task 2).
Task 2: Phenotyping Enterotropic T Cells
- Conduct single cell transcriptomics and genomics.
- Perform genetic and immunopharmacological interventions.
- Identify molecular mechanisms regulating the gut-tumor axis.
We will investigate how enterotropic T cells homing to cancers maintain their proliferative and suppressive capacities, in particular in the light of the recognition of tumor and/or commensal antigens (Task 3).
Task 3: T Cell Functionality
- Study the proliferative capacities of enterotropic T cells.
- Assess the suppressive capacities of enterotropic T cells.
- Explore recognition of tumor and/or commensal antigens.
Altogether, this approach will lay the molecular and metabolic foundations governing the MAdCAM-1–α4β7 gut immune checkpoint.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.487.834 |
Totale projectbegroting | € 2.487.834 |
Tijdlijn
Startdatum | 1-10-2024 |
Einddatum | 30-9-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- INSTITUT GUSTAVE ROUSSYpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Microbiota-T cell interactions - antigen-specificity and regulation in health and diseaseThis project aims to identify and characterize microbe-specific T cells to understand their role in chronic inflammatory diseases and aging, paving the way for targeted therapies. | ERC STG | € 1.500.000 | 2022 | Details |
Decoding Requirements for Infiltration of T ceLLs into solid tumorsThis project aims to enhance T cell infiltration into pancreatic cancer by investigating chemokine regulation and T cell determinants, potentially improving immunotherapy efficacy. | ERC STG | € 1.521.000 | 2023 | Details |
Spatial Quantification of Cellular Metabolism in the Tumor Immune MicroenvironmentThis project aims to enhance cancer immunotherapy by quantifying immune cell metabolism in tumors to identify therapeutic targets that improve patient responses to treatment. | ERC STG | € 1.497.756 | 2023 | Details |
T cell regulation by fed state bacterial metabolitesThis project aims to identify immunoregulatory bacterial molecules produced in response to food intake, enhancing understanding of gut microbiome tolerance mechanisms and their impact on intestinal health. | ERC STG | € 1.499.548 | 2024 | Details |
Microbiota-T cell interactions - antigen-specificity and regulation in health and disease
This project aims to identify and characterize microbe-specific T cells to understand their role in chronic inflammatory diseases and aging, paving the way for targeted therapies.
Decoding Requirements for Infiltration of T ceLLs into solid tumors
This project aims to enhance T cell infiltration into pancreatic cancer by investigating chemokine regulation and T cell determinants, potentially improving immunotherapy efficacy.
Spatial Quantification of Cellular Metabolism in the Tumor Immune Microenvironment
This project aims to enhance cancer immunotherapy by quantifying immune cell metabolism in tumors to identify therapeutic targets that improve patient responses to treatment.
T cell regulation by fed state bacterial metabolites
This project aims to identify immunoregulatory bacterial molecules produced in response to food intake, enhancing understanding of gut microbiome tolerance mechanisms and their impact on intestinal health.