Fluid Biomarkers for Neurodegenerative Dementias
The project aims to develop high-throughput biomarker tools for Alzheimer's and neurodegenerative diseases, enabling comprehensive analysis for diagnostics, drug discovery, and personalized medicine.
Projectdetails
Introduction
Critical to our understanding of Alzheimer’s disease (AD) and other neurodegenerative dementias (NDDs), as well as to finding disease-modifying therapies, is the development of biomarkers for the underlying disease processes.
Development of Biomarkers
To facilitate improved diagnostics and drug discovery, we have developed methods to measure markers of:
- Amyloid and tau pathology
- Central and peripheral nervous system injury
- Astrocytic and microglial activation
- Neuroinflammation
Our most exciting advancement in this field so far is the development of phosphorylated tau assays sensitive enough to measure this protein in plasma to detect AD pathology in the brain and to allow for disease stratification and monitoring based on AD pathology.
Proposal for New Tools
I now propose to develop new high-throughput biomarker tools that will enable the analysis of large cohort studies combining:
- Clinical data
- Imaging data
- Genetic data
- Biomarker data
This comprehensive approach will provide truly comprehensive molecular disease phenotypes that will inform interventions, drug discovery, and translational research, clinical trial stratification, detection of risk and resilience factors (lifestyle-related, as well as genetic), and ultimately drive the quest towards clinically accessible personalized medicine in the NDD field.
Focus on New Biomarkers
A large part of the research efforts will be focused on discovering new biomarkers for:
- TDP-43 and α-synuclein pathologies
- Non-AD tau pathology
- Lysosomal and synaptic dysfunction
This will be achieved through general and targeted proteomics on CSF samples, and by employing a novel cell type-biased tandem mass tag proteomics workflow to discover biomarkers related to neuronal, astrocytic, and microglial cells, and their different activation states.
Examination of Biomarkers
Promising CSF biomarkers will be examined in blood. Biomarker candidates that are measurable in this matrix and correlate with CSF will be developed into sensitive and specific blood tests using cutting-edge technology, as we have previously done for Aβ40, Aβ42, T-tau, P-tau, NfL, and GFAp.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.422.973 |
Totale projectbegroting | € 2.422.973 |
Tijdlijn
Startdatum | 1-9-2022 |
Einddatum | 31-8-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- GOETEBORGS UNIVERSITETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Window to the brain: a game changer in the discovery of human neuronal circuitry, cellular heterogenicity and biomarker profile indicative of early Alzheimer's disease -related pathologyThe project aims to investigate how specific microglial subpopulations impair neuronal functions in early Alzheimer's pathology using unique human brain samples and advanced techniques to identify novel biomarkers. | ERC COG | € 1.998.389 | 2022 | Details |
Global Amyloid Mapping: Solving Amyloid Nucleation by Deep MutagenesisThis project aims to map mutations affecting amyloid nucleation, model transition states, and identify stress-responsive sequences to enhance understanding and treatment of amyloid-related diseases. | ERC COG | € 1.999.008 | 2024 | Details |
Nanotechnology-enabled deep profiling of the blood and brain proteome at the intersection of neurodegeneration and neurooncologyNanoNeuroOmics aims to discover early blood biomarkers for Alzheimer's and Glioblastoma using nanotechnology and proteomics to bridge the gap between brain and blood molecular changes. | ERC STG | € 1.494.954 | 2025 | Details |
Deciphering Neurodegenerative Disease with fast 3D imaging & functional nanoscopyThis project aims to investigate the biophysical mechanisms of protein aggregation in Huntington's Disease using advanced imaging techniques to enhance understanding of neurodegenerative processes. | ERC STG | € 1.500.000 | 2024 | Details |
Window to the brain: a game changer in the discovery of human neuronal circuitry, cellular heterogenicity and biomarker profile indicative of early Alzheimer's disease -related pathology
The project aims to investigate how specific microglial subpopulations impair neuronal functions in early Alzheimer's pathology using unique human brain samples and advanced techniques to identify novel biomarkers.
Global Amyloid Mapping: Solving Amyloid Nucleation by Deep Mutagenesis
This project aims to map mutations affecting amyloid nucleation, model transition states, and identify stress-responsive sequences to enhance understanding and treatment of amyloid-related diseases.
Nanotechnology-enabled deep profiling of the blood and brain proteome at the intersection of neurodegeneration and neurooncology
NanoNeuroOmics aims to discover early blood biomarkers for Alzheimer's and Glioblastoma using nanotechnology and proteomics to bridge the gap between brain and blood molecular changes.
Deciphering Neurodegenerative Disease with fast 3D imaging & functional nanoscopy
This project aims to investigate the biophysical mechanisms of protein aggregation in Huntington's Disease using advanced imaging techniques to enhance understanding of neurodegenerative processes.