Prefabricated Mature Blood Vessels and Tools for Vascularized 3D Cell Culture
The Vasc-on-Demand project aims to develop three innovative products for easy generation of vascularized 3D tissues, enhancing research and drug testing while reducing reliance on animal trials.
Projectdetails
Introduction
In 2020, the cell culture market was valued at $19 billion USD, with consumables comprising more than 60% of the market. The emerging 3D cell culture provides lucrative business opportunities for consumables and tissue test models, but current technology and market supply lack an easy and reliable tool for the uncomplicated creation and cultivation of vascularized and perfusable artificial 3D tissue.
Current Market Limitations
The current 3D cell culture consumable market offers only well plate inserts and organ-on-a-chip systems for generating 3D tissues, which are limited regarding tissue mimicry and complexity. Bioprinting, while promising, is still unreliable for reproducible vascularized tissue engineering.
Project Overview
The EIC Transition Proposal Vasc-on-Demand aims to fill this gap by providing three easy-to-use laboratory products for the generation and cultivation of perfusable vascularized 3D tissue:
- BasicVasc: An all-in-one bioreactor consumable for generation and cultivation of perfusable tissue culture.
- EasyVasc: Prefabricated ready-to-use vessel channel networks without cells.
- CompleteVasc: Prefabricated matured cell-containing vascularization.
Product Development
EasyVasc and CompleteVasc both build on the BasicVasc technology. Therefore, BasicVasc will be advanced for high-throughput production of precisely manufactured structures to be ready for the market. The other products will be fully developed and characterized to allow improved vascularized tissue production with even more advanced and simpler ready-to-use systems.
Team and Objectives
This grant will be carried out by a highly motivated team with synergistic expertise in technology, product engineering, and business development, working towards the foundation of a start-up for the commercialization of the technology.
Potential Impact
The proposed Vasc-on-Demand has the potential to simplify the development of sophisticated test models for research and pharmaceutical approaches like drug testing, leading to reduced animal trials and development costs.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.488.750 |
Totale projectbegroting | € 2.488.750 |
Tijdlijn
Startdatum | 1-5-2024 |
Einddatum | 30-4-2027 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- UNIVERSITAETSKLINIKUM WUERZBURG - KLINIKUM DER BAYERISCHEN JULIUS-MAXIMILIANS-UNIVERSITATpenvoerder
Land(en)
Vergelijkbare projecten binnen EIC Transition
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Targeting cardiac fibrosis with next generation RNA therapeuticsFIBREX aims to develop an innovative ncRNA-based antisense oligonucleotide therapy targeting Meg3 to reverse cardiac fibrosis and treat heart failure, advancing towards clinical readiness. | EIC Transition | € 2.499.482 | 2022 | Details |
automated in-line separatioN and dEtection of eXtracellular vesicles for liqUid biopsy applicationSThe NEXUS project aims to industrialize a customizable platform for the separation and analysis of extracellular vesicles from biofluids, enhancing cancer diagnostics and monitoring. | EIC Transition | € 2.497.750 | 2022 | Details |
Predictive REagent-Antibody Replacement Technology stage 2-TranslationPRe-ART-2T aims to advance predictive antibody technology to TRL6, replacing low-quality monoclonal antibodies with high-performing synthetic alternatives, and attract ~€20M in investment. | EIC Transition | € 800.000 | 2022 | Details |
Advancing a vaccine targeting genetic amyotrophic lateral sclerosis (C9orf72 ALS) to the clinical stageDeveloping a poly-GA peptide vaccine to reduce protein aggregation and motor deficits in C9orf72 ALS, aiming for clinical evaluation and market entry through strategic partnerships. | EIC Transition | € 2.499.810 | 2022 | Details |
Targeting cardiac fibrosis with next generation RNA therapeutics
FIBREX aims to develop an innovative ncRNA-based antisense oligonucleotide therapy targeting Meg3 to reverse cardiac fibrosis and treat heart failure, advancing towards clinical readiness.
automated in-line separatioN and dEtection of eXtracellular vesicles for liqUid biopsy applicationS
The NEXUS project aims to industrialize a customizable platform for the separation and analysis of extracellular vesicles from biofluids, enhancing cancer diagnostics and monitoring.
Predictive REagent-Antibody Replacement Technology stage 2-Translation
PRe-ART-2T aims to advance predictive antibody technology to TRL6, replacing low-quality monoclonal antibodies with high-performing synthetic alternatives, and attract ~€20M in investment.
Advancing a vaccine targeting genetic amyotrophic lateral sclerosis (C9orf72 ALS) to the clinical stage
Developing a poly-GA peptide vaccine to reduce protein aggregation and motor deficits in C9orf72 ALS, aiming for clinical evaluation and market entry through strategic partnerships.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Development of novel 3D vascularized cardiac models to investigate Coronary Microvascular DiseaseThe 3DVasCMD project aims to develop a 3D vascularized cardiac model using iPSC technology to study coronary microvascular disease and identify therapeutic targets for improved cardiovascular health. | ERC STG | € 1.496.395 | 2022 | Details |
3D-assembly of interactive microgels to grow in vitro vascularized, structured, and beating human cardiac tissues in high-throughputHEARTBEAT aims to create personalized, vascularized millimeter-scale heart tissues using innovative microgel assemblies to enhance stem cell interactions and mimic native environments. | ERC COG | € 2.969.219 | 2022 | Details |
Laser biofabrication of 3D multicellular tissue with perfusible vascular networkThis project aims to revolutionize organ regeneration by developing a 3D vascular system using advanced bioprinting techniques to enable effective perfusion in tissue constructs. | ERC ADG | € 2.499.539 | 2022 | Details |
Redesigning aortic endograft: enabling in-situ personalized aneurysm healingEPEIUS aims to revolutionize aortic aneurysm treatment by developing a bioengineered, 3D-printed, drug-loaded endograft for early personalized healing through innovative in-vitro models. | ERC COG | € 1.991.225 | 2024 | Details |
Development of novel 3D vascularized cardiac models to investigate Coronary Microvascular Disease
The 3DVasCMD project aims to develop a 3D vascularized cardiac model using iPSC technology to study coronary microvascular disease and identify therapeutic targets for improved cardiovascular health.
3D-assembly of interactive microgels to grow in vitro vascularized, structured, and beating human cardiac tissues in high-throughput
HEARTBEAT aims to create personalized, vascularized millimeter-scale heart tissues using innovative microgel assemblies to enhance stem cell interactions and mimic native environments.
Laser biofabrication of 3D multicellular tissue with perfusible vascular network
This project aims to revolutionize organ regeneration by developing a 3D vascular system using advanced bioprinting techniques to enable effective perfusion in tissue constructs.
Redesigning aortic endograft: enabling in-situ personalized aneurysm healing
EPEIUS aims to revolutionize aortic aneurysm treatment by developing a bioengineered, 3D-printed, drug-loaded endograft for early personalized healing through innovative in-vitro models.