Acoustofluidic thin-film actuated chip for exosome separation from blood
AcouSome aims to develop a polymer-based microfluidic chip for isolating exosomes from blood using advanced acoustofluidics, enhancing point-of-care diagnostics for various diseases.
Projectdetails
Introduction
AcouSome is a consortium stemming from the ongoing EIC-FET Open BioWings project, and consists of four of the BioWings project partners (AcouSort AB, DTU, Lund University, and Day One Srl). AcouSome has the ambition to build on the disruptive technology of thin film actuated acoustofluidics developed in BioWings. The results obtained in BioWings will be combined with a polymer acoustofluidics technology developed in the ongoing Eurostars AcouPlast project to fabricate a polymer-based microfluidic chip for separating and enriching exosomes from blood for use in the next generation of point-of-care diagnostics.
Importance of Exosomes
Exosomes are nano-sized extracellular vesicles that are released by a significant number of different cell types. They are considered an important biomarker, with high diagnostic potential in a wide range of diseases, including:
- Different kinds of cancer (glioblastoma, melanoma, prostate cancer, and many others)
- Hepatitis
- Kidney diseases
- Cardiovascular diseases
- Liver diseases
Therefore, there is an increasing interest in exosomes as a powerful diagnostic tool. Having the opportunity to isolate and analyze exosomes from a routine blood test is crucial for early detection of a wide range of diseases.
AcouSome Chip Functionality
In the AcouSome chip, exosomes will be separated and enriched from blood by combining two steps already developed by Lund University and AcouSort.
- First, plasma will be separated from blood by flowing the blood through a microfluidic channel, pushing the cells towards the centerline of the channel using ultrasound, and subsequently splitting the cell and plasma flows.
- Exosomes will then be trapped and enriched from the plasma flow using a localized acoustic field.
The acoustofluidic chip will be driven using thin-film actuators as invented together with DTU in the BioWings project. The exosome separation cartridge is intended for sample preparation in research labs and future diagnostic point-of-care instruments.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.498.419 |
Totale projectbegroting | € 2.498.421 |
Tijdlijn
Startdatum | 1-1-2023 |
Einddatum | 31-12-2025 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- ACOUSORT ABpenvoerder
- DANMARKS TEKNISKE UNIVERSITET
- LUNDS UNIVERSITET
- DAY ONE SOCIETA A RESPONSABILITA LIMITATA
Land(en)
Vergelijkbare projecten binnen EIC Transition
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Fully automated cell-free DNA extraction and quantification - liquid biopsies safely from Patient to LabBiopSense aims to develop and validate a fully automated disposable cartridge for cfDNA extraction from blood, enhancing reliability and transport ease for cancer diagnostics and prenatal screening. | EIC Transition | € 2.500.000 | 2022 | Details |
automated in-line separatioN and dEtection of eXtracellular vesicles for liqUid biopsy applicationSThe NEXUS project aims to industrialize a customizable platform for the separation and analysis of extracellular vesicles from biofluids, enhancing cancer diagnostics and monitoring. | EIC Transition | € 2.497.750 | 2022 | Details |
The first wide range flow sensor to unlock microfluidic cell analyses for preclinical studiesThe project aims to develop the GALILEO flow sensor to enhance microfluidic cell assays, improving therapeutic success rates and enabling earlier detection and treatment in drug development. | EIC Transition | € 1.667.500 | 2023 | Details |
Closing the European gap towards a large scale ex vivo platelet production built upon a silk-based scaffold bioreactorThe project aims to upscale ex vivo production of universal platelets using innovative technologies to meet rising demand and ensure compatibility for patients with transfusion reactions. | EIC Transition | € 1.798.152 | 2022 | Details |
Fully automated cell-free DNA extraction and quantification - liquid biopsies safely from Patient to Lab
BiopSense aims to develop and validate a fully automated disposable cartridge for cfDNA extraction from blood, enhancing reliability and transport ease for cancer diagnostics and prenatal screening.
automated in-line separatioN and dEtection of eXtracellular vesicles for liqUid biopsy applicationS
The NEXUS project aims to industrialize a customizable platform for the separation and analysis of extracellular vesicles from biofluids, enhancing cancer diagnostics and monitoring.
The first wide range flow sensor to unlock microfluidic cell analyses for preclinical studies
The project aims to develop the GALILEO flow sensor to enhance microfluidic cell assays, improving therapeutic success rates and enabling earlier detection and treatment in drug development.
Closing the European gap towards a large scale ex vivo platelet production built upon a silk-based scaffold bioreactor
The project aims to upscale ex vivo production of universal platelets using innovative technologies to meet rising demand and ensure compatibility for patients with transfusion reactions.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Taking blood apart by soundThe project aims to develop an acoustic separation technology for blood components to improve resolution, efficiency, and quality in healthcare applications, ultimately facilitating market integration. | ERC Proof of... | € 150.000 | 2023 | Details |
Reliable and scalable procedures for the isolation and loading of extracellular vesiclesLABORIOUS aims to develop innovative methods for isolating and loading therapeutic agents into exosomes, enhancing their clinical application in various diseases while minimizing membrane damage. | ERC Proof of... | € 150.000 | 2024 | Details |
Acoustic whole blood imaging flow cytometry for rare cell identificationThis project aims to develop acoustic whole-blood cytometry for accurate detection and monitoring of circulating tumor cells in metastatic breast and prostate cancer, enhancing personalized healthcare. | ERC Proof of... | € 150.000 | 2024 | Details |
Single-Molecule Acousto-Photonic NanofluidicsSIMPHONICS aims to develop a high-throughput, non-invasive platform for protein fingerprinting by integrating nanopore technology with acoustic manipulation and fluorescence detection. | ERC Starting... | € 1.499.395 | 2022 | Details |
AdDitive mAnufacturing Microfluidica – ADAMPimBio B.V. ontwikkelt kosteneffectieve, klantspecifieke microfluïdische chips voor biotechnologie en gezondheidszorg om onderzoek te versnellen. | Mkb-innovati... | € 20.000 | 2020 | Details |
Taking blood apart by sound
The project aims to develop an acoustic separation technology for blood components to improve resolution, efficiency, and quality in healthcare applications, ultimately facilitating market integration.
Reliable and scalable procedures for the isolation and loading of extracellular vesicles
LABORIOUS aims to develop innovative methods for isolating and loading therapeutic agents into exosomes, enhancing their clinical application in various diseases while minimizing membrane damage.
Acoustic whole blood imaging flow cytometry for rare cell identification
This project aims to develop acoustic whole-blood cytometry for accurate detection and monitoring of circulating tumor cells in metastatic breast and prostate cancer, enhancing personalized healthcare.
Single-Molecule Acousto-Photonic Nanofluidics
SIMPHONICS aims to develop a high-throughput, non-invasive platform for protein fingerprinting by integrating nanopore technology with acoustic manipulation and fluorescence detection.
AdDitive mAnufacturing Microfluidica – ADAM
PimBio B.V. ontwikkelt kosteneffectieve, klantspecifieke microfluïdische chips voor biotechnologie en gezondheidszorg om onderzoek te versnellen.