Acoustic whole blood imaging flow cytometry for rare cell identification

This project aims to develop acoustic whole-blood cytometry for accurate detection and monitoring of circulating tumor cells in metastatic breast and prostate cancer, enhancing personalized healthcare.

Subsidie
€ 150.000
2024

Projectdetails

Introduction

This project addresses the need for new tools to detect and monitor the disease progression in patients with metastatic cancer. Breast and prostate cancer are the most common malignant cancers in women and men, respectively.

Importance of Metastasis

Metastasis is the main threat in these cancers since it turns a curable local disease into a chronic lethal disease. With emerging new targeting therapies, there is an unmet clinical need for improved prognostication, treatment prediction, and treatment monitoring. Circulating tumor cells enumeration has the potential to become a valuable tool.

Challenges in Detection

However, circulating tumor cells are very rare, and the background of other blood cells is vast, which makes it extremely challenging to classify and count these cells.

Project Development

In the project, we will develop acoustic whole-blood cytometry. This will enable unbiased imaging and enumeration of circulating tumor cells through a panel of fluorescent antibodies with minimal pre-treatment.

Vision for Healthcare

The vision is that the approach will become standard equipment in hospital labs in the transition to more personalized healthcare.

Evaluation of Technical Challenges

The project will evaluate key technical challenges on the path to commercialization. It has strong support from an industrial partner and from clinicians and pre-clinical researchers focused on breast and prostate cancer.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-10-2024
Einddatum31-3-2026
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • LUNDS UNIVERSITETpenvoerder

Land(en)

Sweden

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000

Vergelijkbare projecten uit andere regelingen

ERC STG

Detecting epigenetic biomarkers in the blood for non-invasive precision oncology

Develop new non-invasive diagnostic methods for cancer by analyzing epigenetic markers in circulating tumor DNA to improve sensitivity and monitor disease evolution.

€ 1.500.000
ERC COG

Proteomic Analysis of Cell communication in Tumors

This project aims to analyze cancer proteome dynamics at single-cell resolution to understand tumor heterogeneity and improve personalized treatment for resistant metastatic cells.

€ 2.000.000
ERC STG

Towards early cancer detection and tumor classification using epigenomic biomarkers in blood

EpiCblood aims to enhance early cancer detection by increasing cancer-specific cf-nucleosomes through innovative histone modification profiling and computational analysis for improved liquid biopsy assays.

€ 1.499.999
EIC Transition

Development and validation of a pan-cancer neutrophil biomarker test for predicting clinical benefit from immunotherapy based on flow cytometry analysis of blood samples

The NeutroFlow project aims to develop a non-invasive blood test using a flow cytometry assay to predict cancer immunotherapy benefits, enhancing patient outcomes and reducing costs.

€ 2.499.999