Future Data Storage Using Colloidal Memory Technology
The FastComet project aims to develop a proof-of-concept for low-cost, high-density colloidal memory using nanoparticles for ultra-high data storage capabilities.
Projectdetails
Introduction
Data is being generated at ever-increasing rates with the widespread digital transformation in businesses and society. The continually increasing demand for affordable data storage puts tremendous pressure on storage technologies.
Need for New Concepts
New concepts for low-cost, high-storage-density memories are urgently needed to keep storage capabilities in line with the growing demand.
FastComet Concept
FastComet is a colloidal memory concept in which colloidal nanoparticles are considered data carriers. The memory consists of a large array of nanocapillaries in which two types of nanoparticles with antagonistic electrophoresis (DEP) properties can be selectively inserted into the capillary by DEP forces.
Data Storage Mechanism
Data can be stored as the specific stacking sequence of the different particle types. A CMOS circuit at the periphery of the array addresses and controls the electrodes.
Long-term Goals
The long-term aim is to develop an integrated device that is able to store data using nanoparticles smaller than 15 nm. This would ultimately result in ultra-high bit densities exceeding 100 Gbit per square millimeter and potentially reaching 1 Tbit per square millimeter at a lower cost than existing data storage technologies.
Project Objectives
In the FastComet project, we aim to establish a proof-of-concept for colloidal memory by:
- Identifying suitable nanoparticles.
- Developing nanofabricated test structures.
- Using advanced nanoscopy imaging techniques to demonstrate the selective manipulation of nanoparticles into passive nanocapillary arrays.
- Establishing a modeling framework for future technology development.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 3.020.886 |
Totale projectbegroting | € 3.020.886 |
Tijdlijn
Startdatum | 1-11-2023 |
Einddatum | 31-10-2026 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- KATHOLIEKE UNIVERSITEIT LEUVENpenvoerder
- INTERUNIVERSITAIR MICRO-ELECTRONICA CENTRUM
- UNIVERSIDAD DE VIGO
- UNIVERSITE DE STRASBOURG
- UNIVERSIDAD AUTONOMA DE MADRID
- INSTITUT QUIMIC DE SARRIA
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MIcrobe-synthesised DNA NAnostructures for DIsplay-controlled Storage CartridgesDevelop a low-cost, energy-efficient data drive using bacterial cells to efficiently write, edit, store, and retrieve DNA-based data for long-term storage. | EIC Pathfinder | € 3.999.506 | 2023 | Details |
Interoperable end-to-end platform of scalable and sustainable high-throughput technologies for DNA-based digital data storagePEARL-DNA aims to develop a high-throughput, modular DNA-based data storage platform to enhance longevity, efficiency, and integration in sustainable data management solutions. | EIC Pathfinder | € 3.999.857 | 2023 | Details |
3D Biofabricated high-perfoRmance dna-carbon nanotube dIgital electroniCKS3D-BRICKS aims to revolutionize nanoelectronics by using DNA nanotechnology for scalable, high-performance carbon nanotube-based devices, enhancing efficiency and enabling diverse applications. | EIC Pathfinder | € 3.570.258 | 2023 | Details |
Next Generation Molecular Data StorageThis project aims to develop a cost-effective and efficient DNA nanostructure-based data storage system, enhancing longevity and reducing electronic waste compared to traditional media. | EIC Pathfinder | € 2.418.514 | 2023 | Details |
DNA-based Infrastructure for Storage and ComputationThe DISCO project aims to engineer a robust DNA-based storage and computing platform, starting with a 10-bit prototype and scaling to hundreds of bits using advanced molecular techniques. | EIC Pathfinder | € 3.993.665 | 2023 | Details |
MIcrobe-synthesised DNA NAnostructures for DIsplay-controlled Storage Cartridges
Develop a low-cost, energy-efficient data drive using bacterial cells to efficiently write, edit, store, and retrieve DNA-based data for long-term storage.
Interoperable end-to-end platform of scalable and sustainable high-throughput technologies for DNA-based digital data storage
PEARL-DNA aims to develop a high-throughput, modular DNA-based data storage platform to enhance longevity, efficiency, and integration in sustainable data management solutions.
3D Biofabricated high-perfoRmance dna-carbon nanotube dIgital electroniCKS
3D-BRICKS aims to revolutionize nanoelectronics by using DNA nanotechnology for scalable, high-performance carbon nanotube-based devices, enhancing efficiency and enabling diverse applications.
Next Generation Molecular Data Storage
This project aims to develop a cost-effective and efficient DNA nanostructure-based data storage system, enhancing longevity and reducing electronic waste compared to traditional media.
DNA-based Infrastructure for Storage and Computation
The DISCO project aims to engineer a robust DNA-based storage and computing platform, starting with a 10-bit prototype and scaling to hundreds of bits using advanced molecular techniques.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
ANalogue In-Memory computing with Advanced device TEchnologyThe project aims to develop closed-loop in-memory computing (CL-IMC) technology to significantly reduce energy consumption in data processing while maintaining high computational efficiency. | ERC Advanced... | € 2.498.868 | 2023 | Details |
Real Processing in Phase Change MemoryThe project aims to develop and commercialize a memristive memory processing unit (mMPU) using phase change memory to enhance computer performance and energy efficiency for various applications. | ERC Proof of... | € 150.000 | 2022 | Details |
Manipulating magnetic domains through femtosecond pulses of magnetic fieldFemtoMagnet aims to revolutionize data storage by engineering plasmonic nanodevices to generate ultrafast, reversible magnetic fields for nanoscale manipulation of magnetic domains. | ERC Consolid... | € 2.499.926 | 2024 | Details |
Accelerating Datacentre performance through Memory Chips to efficiently manage the Big Data AgeUPMEM's Processing-In-Memory technology enhances server efficiency by performing calculations within memory chips, achieving up to 20x speed and 10x energy savings for Big Data and AI applications. | EIC Accelerator | € 2.496.229 | 2022 | Details |
Ultralow-power logic-in-memory devices based on ferroelectric two-dimensional electron gasesUPLIFT aims to develop a non-volatile, ultralow power logic-in-memory component using ferroelectric materials to reduce power consumption in microelectronics, supporting a new start-up for commercialization. | ERC Proof of... | € 150.000 | 2023 | Details |
ANalogue In-Memory computing with Advanced device TEchnology
The project aims to develop closed-loop in-memory computing (CL-IMC) technology to significantly reduce energy consumption in data processing while maintaining high computational efficiency.
Real Processing in Phase Change Memory
The project aims to develop and commercialize a memristive memory processing unit (mMPU) using phase change memory to enhance computer performance and energy efficiency for various applications.
Manipulating magnetic domains through femtosecond pulses of magnetic field
FemtoMagnet aims to revolutionize data storage by engineering plasmonic nanodevices to generate ultrafast, reversible magnetic fields for nanoscale manipulation of magnetic domains.
Accelerating Datacentre performance through Memory Chips to efficiently manage the Big Data Age
UPMEM's Processing-In-Memory technology enhances server efficiency by performing calculations within memory chips, achieving up to 20x speed and 10x energy savings for Big Data and AI applications.
Ultralow-power logic-in-memory devices based on ferroelectric two-dimensional electron gases
UPLIFT aims to develop a non-volatile, ultralow power logic-in-memory component using ferroelectric materials to reduce power consumption in microelectronics, supporting a new start-up for commercialization.