SBMP - disrupting the manufacturing of biological drugs through a ground-breaking nanotechnology-based microcarrier
Cellevate's SBMP-microcarriers use innovative nanofibrous technology to enhance adherent cell culture in bioreactors, significantly improving biopharmaceutical production efficiency and quality.
Projectdetails
Introduction
Cellevate proposes a completely novel type of nanofibrous microcarriers for adherent cell culture in bioreactors based on the proprietary Superior Biologics Manufacturing Platform (SBMP). It is a game-changing deep-tech innovation for the biopharmaceutical industry.
Features of SBMP-Microcarriers
SBMP-microcarriers are:
- Highly customizable
- Faithfully replicate the 3D extracellular environment found in the human body
- Provide a 60 times larger area for cell growth compared to competitive solutions
Technology and Innovation
The unique scaffold properties are a result of a patent-pending nanofiber scaffold production technology (PCT/EP2020/081958) which creates networks of polymer nanofibers that can be handled in a liquid form, unachievable by competing solutions.
Impact on the Biopharmaceutical Market
By offering high yields and ensuring the optimal conditions for human cell growth, SBMP-microcarriers have the potential to transform the biopharmaceutical market by pushing the limits of today’s biological drugs production to an unachievable level of quality and efficiency.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.485.857 |
Totale projectbegroting | € 3.551.225 |
Tijdlijn
Startdatum | 1-10-2022 |
Einddatum | 30-9-2024 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- CELLEVATE ABpenvoerder
Land(en)
Vergelijkbare projecten binnen EIC Accelerator
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
A new cardioprotective drug for acute treatment of myocardial infarctionResoTher aims to validate RTP-026, an immunomodulating therapy, to reduce heart damage and HF risk post-myocardial infarction through Phase II clinical studies. | EIC Accelerator | € 2.499.999 | 2024 | Details |
"The NIMBLE System: A novel non-invasive and non-ionizing medical device for the continous monitoring of patients with implanted cardiovascular stents"""NIMBLE Diagnostics is developing a microwave-based device for non-invasive stent monitoring, aiming to shift from reactive to proactive care and improve patient outcomes. | EIC Accelerator | € 2.306.500 | 2024 | Details |
Autonomous robotics and digital TWIN to improve water network performancesThe project develops a robotic inspection system for water utilities, enabling autonomous pipeline assessments to enhance water quality and sustainability through a subscription-based RaaS model. | EIC Accelerator | € 2.478.210 | 2024 | Details |
Toopi Regen: Unleash the power of urine to finally scale a real closed loop and regenerative farming systemToopi Organics aims to revolutionize agriculture by up-cycling human urine into sustainable biostimulants, reducing reliance on mineral fertilizers while enhancing soil health and farmer profitability. | EIC Accelerator | € 2.396.457 | 2024 | Details |
A new cardioprotective drug for acute treatment of myocardial infarction
ResoTher aims to validate RTP-026, an immunomodulating therapy, to reduce heart damage and HF risk post-myocardial infarction through Phase II clinical studies.
"The NIMBLE System: A novel non-invasive and non-ionizing medical device for the continous monitoring of patients with implanted cardiovascular stents"""
NIMBLE Diagnostics is developing a microwave-based device for non-invasive stent monitoring, aiming to shift from reactive to proactive care and improve patient outcomes.
Autonomous robotics and digital TWIN to improve water network performances
The project develops a robotic inspection system for water utilities, enabling autonomous pipeline assessments to enhance water quality and sustainability through a subscription-based RaaS model.
Toopi Regen: Unleash the power of urine to finally scale a real closed loop and regenerative farming system
Toopi Organics aims to revolutionize agriculture by up-cycling human urine into sustainable biostimulants, reducing reliance on mineral fertilizers while enhancing soil health and farmer profitability.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Smart manufacturing for autologous cell therapies enabled by innovative biomonitoring technologies and advanced process controlThe SMARTER project aims to develop a smart bioprocessing platform for personalized autologous cell therapies, enhancing manufacturing efficiency and enabling clinical use for solid tumors. | EIC Pathfinder | € 1.364.281 | 2022 | Details |
Biopharmaceuticals purification by continuous membrane-assisted crystallization achieving lower cost and intensified processesThe BIOPURE project aims to revolutionize monoclonal antibody purification using innovative membrane technology to enhance efficiency, reduce costs, and improve access to biomedicines. | EIC Transition | € 2.069.150 | 2023 | Details |
Supramolecular microcapsules for bioreactor expansion of induced pluripotent stem cellsThe SUPROTECT project aims to develop squaramide-based microcapsules for culturing pluripotent stem cells, evaluating their effectiveness while securing intellectual property for potential licensing. | ERC POC | € 150.000 | 2024 | Details |
Decellularised Extracellular Carpets for the Innovative Production of Human Engineered ReplicatesThis project aims to accelerate the development of cell-derived products using macromolecular crowding, enhancing European biotech competitiveness and creating new jobs and markets. | ERC POC | € 150.000 | 2024 | Details |
Smart manufacturing for autologous cell therapies enabled by innovative biomonitoring technologies and advanced process control
The SMARTER project aims to develop a smart bioprocessing platform for personalized autologous cell therapies, enhancing manufacturing efficiency and enabling clinical use for solid tumors.
Biopharmaceuticals purification by continuous membrane-assisted crystallization achieving lower cost and intensified processes
The BIOPURE project aims to revolutionize monoclonal antibody purification using innovative membrane technology to enhance efficiency, reduce costs, and improve access to biomedicines.
Supramolecular microcapsules for bioreactor expansion of induced pluripotent stem cells
The SUPROTECT project aims to develop squaramide-based microcapsules for culturing pluripotent stem cells, evaluating their effectiveness while securing intellectual property for potential licensing.
Decellularised Extracellular Carpets for the Innovative Production of Human Engineered Replicates
This project aims to accelerate the development of cell-derived products using macromolecular crowding, enhancing European biotech competitiveness and creating new jobs and markets.