OMI AI ECG Model - application for more accurate heart attack diagnosis
The OMI AI ECG Model is an AI mobile app that enhances OMI diagnosis from ECGs, improving sensitivity and speed, ultimately transforming heart attack management and saving lives.
Projectdetails
Introduction
Globally, 50M patients with chest pain present to emergency departments each year. In these patients, a 12-lead electrocardiogram (ECG) serves as a swift and readily available diagnostic test for identifying acute obstructive heart attacks (OMI), a life-threatening condition that requires prompt transfer to a cardiac catheterization laboratory.
OMI AI ECG Model
The OMI AI ECG Model is an AI-powered mobile application that can process any ECG and diagnose OMI faster and more precisely than current state-of-the-art criteria, according to which 50% of OMI cases are missed or delayed in treatment.
Technology Overview
This technology combines:
- A patented ECG digitization system that converts any paper-form or screen-based images of ECGs into standardized digital waveforms.
- An AI algorithm trained by physician experts with 50+ years of experience in OMI diagnosis from ECG who established the OMI paradigm.
Applicability
It is immediately applicable, doesn't require additional hardware, and works with any healthcare infrastructure.
Validation and Impact
In a large international validation of over 2,000 patients, it has proven to be twice as sensitive as the current standard of care in diagnosing OMI and can detect it 2.9 hours faster.
Benefits
Due to more accurate and faster diagnosis, this solution will cause a paradigm shift in heart attack patient management, saving millions of lives and decreasing the economic burden of cardiovascular disease.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.499.999 |
Totale projectbegroting | € 4.495.966 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 30-6-2026 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- POWERFUL MEDICAL SROpenvoerder
Land(en)
Vergelijkbare projecten binnen EIC Accelerator
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
AI-based clinical software for fully automated Cardiac Magnetic Resonance reportingAI4MedImaging is developing AI4CMR.Plus, a revolutionary software for automated cardiac assessment via CMR, aiming for a 2025 launch to enhance CVD diagnosis and improve patient outcomes. | EIC Accelerator | € 1.753.842 | 2022 | Details |
Acorai Heart Monitor - Non-invasive multi-sensor device for heart failure monitoringThe Acorai Heart Monitor is a non-invasive device using machine learning to estimate cardiac pressure in heart failure patients, aiming to improve treatment outcomes and reduce hospitalizations. | EIC Accelerator | € 2.299.633 | 2023 | Details |
WILLEM: AI to Reduce Cardiovascular DiseasesWILLEM is an automated cloud platform that analyzes ECGs to diagnose arrhythmias and predict cardiovascular diseases, enhancing clinical workflows with AI-driven insights. | EIC Accelerator | € 2.500.000 | 2022 | Details |
Advanced Remote Continuous patient Health mANaGemEnt SoLutionCheckpointcardio aims to revolutionize patient monitoring by establishing a 24/7 remote observation center using AI and wearables to enhance care for critically ill and chronic disease patients. | EIC Accelerator | € 2.436.000 | 2023 | Details |
Development and clinical evaluation of an end-to-end Heart Failure management solution powered by predictive AIImplicity is developing an AI-driven platform to predict heart failure events using cardiac device data, enhancing patient care and reducing hospitalizations through tailored insights and management tools. | EIC Accelerator | € 2.488.359 | 2025 | Details |
AI-based clinical software for fully automated Cardiac Magnetic Resonance reporting
AI4MedImaging is developing AI4CMR.Plus, a revolutionary software for automated cardiac assessment via CMR, aiming for a 2025 launch to enhance CVD diagnosis and improve patient outcomes.
Acorai Heart Monitor - Non-invasive multi-sensor device for heart failure monitoring
The Acorai Heart Monitor is a non-invasive device using machine learning to estimate cardiac pressure in heart failure patients, aiming to improve treatment outcomes and reduce hospitalizations.
WILLEM: AI to Reduce Cardiovascular Diseases
WILLEM is an automated cloud platform that analyzes ECGs to diagnose arrhythmias and predict cardiovascular diseases, enhancing clinical workflows with AI-driven insights.
Advanced Remote Continuous patient Health mANaGemEnt SoLution
Checkpointcardio aims to revolutionize patient monitoring by establishing a 24/7 remote observation center using AI and wearables to enhance care for critically ill and chronic disease patients.
Development and clinical evaluation of an end-to-end Heart Failure management solution powered by predictive AI
Implicity is developing an AI-driven platform to predict heart failure events using cardiac device data, enhancing patient care and reducing hospitalizations through tailored insights and management tools.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Schaalbare AI voor patiënten met pijn op de borstHet project ontwikkelt een AI-algoritme dat cardiologen ondersteunt bij het aanvragen van CT-scans voor patiënten met pijn op de borst. | 1.1 - Het ve... | € 795.688 | 2024 | Details |
ECG@HOMEHet project ontwikkelt een gebruiksvriendelijk ECG-apparaat voor thuisdiagnose van hartziekten zonder cardioloog. | 1.1 - Het ve... | € 149.011 | 2023 | Details |
Oog voor het Hart: de miniECGHet project ontwikkelt een miniECG voor huisartsen om snel en goedkoop hartdiagnoses te stellen, waardoor patiënten beter geholpen worden en de druk op specialisten vermindert. | Mkb-innovati... | € 340.060 | 2021 | Details |
Optimize risk prediction after myocardial infarction through artificial intelligence and multidimensional evaluationThis project aims to enhance myocardial infarction risk prediction by integrating data from wearable devices, biomarkers, and AI to identify novel risk factors for improved clinical decision-making. | ERC Starting... | € 1.405.894 | 2024 | Details |
A Multi-Omics Approach for Novel Drug Targets, Biomarkers and Risk Algorithms for Myocardial InfarctionTargetMI aims to rapidly discover novel drug targets and biomarkers for myocardial infarction using a high-throughput multi-omic approach on 1000 samples, enhancing clinical risk prediction and translation. | EIC Pathfinder | € 3.999.840 | 2023 | Details |
Schaalbare AI voor patiënten met pijn op de borst
Het project ontwikkelt een AI-algoritme dat cardiologen ondersteunt bij het aanvragen van CT-scans voor patiënten met pijn op de borst.
ECG@HOME
Het project ontwikkelt een gebruiksvriendelijk ECG-apparaat voor thuisdiagnose van hartziekten zonder cardioloog.
Oog voor het Hart: de miniECG
Het project ontwikkelt een miniECG voor huisartsen om snel en goedkoop hartdiagnoses te stellen, waardoor patiënten beter geholpen worden en de druk op specialisten vermindert.
Optimize risk prediction after myocardial infarction through artificial intelligence and multidimensional evaluation
This project aims to enhance myocardial infarction risk prediction by integrating data from wearable devices, biomarkers, and AI to identify novel risk factors for improved clinical decision-making.
A Multi-Omics Approach for Novel Drug Targets, Biomarkers and Risk Algorithms for Myocardial Infarction
TargetMI aims to rapidly discover novel drug targets and biomarkers for myocardial infarction using a high-throughput multi-omic approach on 1000 samples, enhancing clinical risk prediction and translation.