Next-generation weather intelligence for more accurate decision making throughout the economy

Skyfora is developing a pioneering 3D weather monitoring technology using GNSS signal delay data to provide real-time global weather information for better adaptation to climate change impacts.

Subsidie
€ 2.498.561
2023

Projectdetails

Introduction

In light of climate change, people around the world must increasingly cope with unexpected and unfavourable weather conditions with significant impact on the proper functioning of societies. Although significant work is done to mitigate climate change, it is inevitable that reversing the course will take time.

Importance of Adaptation

Meanwhile, it is essential to adapt to the new reality and the key to this is a better understanding of weather.

Innovation by Skyfora

For this purpose, Skyfora is developing a ground-breaking innovation that is the first to provide accurate and detailed weather information in 3D derived from GNSS signal delay data.

Technology Features

This technology enables real-time measurement of the most important weather parameters around the globe, instead of certain measured locations.

Benefits

As a result, the threats of extreme weather phenomena can be continuously monitored, including:

  • Storms
  • Floods
  • Snowstorms
  • Heatwaves

Timely measures can be taken to save lives and mitigate economic disruptions and financial risks.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.498.561
Totale projectbegroting€ 3.569.373

Tijdlijn

Startdatum1-2-2023
Einddatum31-7-2025
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • SKYFORA OYpenvoerder

Land(en)

Finland

Vergelijkbare projecten binnen EIC Accelerator

EIC Accelerator

Worlwide HYdrological Large-scale Database

vorteX.io's WHYLD project utilizes innovative micro-stations and AI to provide real-time hydro-meteorological data for flood risk management across Europe.

€ 2.499.999
EIC Accelerator

Precise, Global Temperature Data for a Growing Planet

ConstellR aims to enhance global food production by 4% and reduce agricultural water waste through high-precision temperature data from a scalable microsatellite constellation.

€ 2.454.396
EIC Accelerator

Satellite-based change detection and predictive monitoring of infrastructure grids based on high resolution data

LiveEO will develop an AI-driven satellite monitoring service to detect and predict infrastructure threats in real-time, providing actionable insights through mobile and web apps.

€ 1.735.300
EIC Accelerator

Accelerating breakthrough Innovation to monitor, control and reduce Methane emissions.

Absolut Sensing's GESat satellite constellation aims to provide accurate and affordable methane emissions data to support the Global Methane Pledge's 30% reduction target by 2030.

€ 2.498.125

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

Caeli

Het project onderzoekt de haalbaarheid van een AI-systeem voor het real-time voorspellen van klimatologische rampen en hun economische impact op overheid, gemeenten, burgers en verzekeraars.

€ 20.000
Mkb-innovati...

Testing optical solutions for calibrating models that predict behavior of soil bodies

Het project ontwikkelt een geïntegreerd systeem van optische sensoren en rekenmodellen om grondgedrag onder extreme weersomstandigheden te voorspellen, ter verbetering van infrastructuurbeheer.

€ 20.000
Mkb-innovati...

SkyDowser en Dataplatform

WaterMappers en Acacia ontwikkelen de SkyDowser, een innovatief meetinstrument en data-platform, om de teeltopbrengst in de landbouw met 5% te verhogen ondanks klimaatverandering.

€ 249.375
ERC Starting...

Extratropical-Tropical interAction: A unified view on the extratropical impact on the subtropics and tropics at weather timescales

This project aims to quantify and understand how extratropical dynamics influence tropical weather patterns, enhancing forecasting accuracy and climate projections through innovative modeling and observational studies.

€ 1.687.470
ERC Starting...

Advancing Subseasonal PredIctions at Reduced computational Effort

ASPIRE aims to enhance subseasonal weather predictions by leveraging tropical convective variability and machine learning to reduce computational costs while improving forecast accuracy.

€ 1.496.246