Facilitating personalised Lung Treatment Decisions through a Deeptech AI Clinical Decision Support System

Thirona's LungQ-Care project aims to develop an AI-driven clinical decision support system to enhance personalized lung treatment and streamline thoracic imaging analysis.

Subsidie
€ 2.499.999
2023

Projectdetails

Introduction

With the support of EIC funding, Thirona aims to transform their innovative thoracic AI imaging system, LungQ, into an end-to-end clinical decision support system (CDSS) called LungQ-Care.

Current Challenges

The current information workflow of thoracic imaging makes it exceedingly complicated to personalize lung treatments.

Solution Overview

However, LungQ-Care tackles this challenge by enabling radiologists to:

  • Quantify medical imaging and disease phenotypes
  • Deliver structured analyses to lung doctors

This empowers them to interpret medical imaging effectively and offer personalized treatments to their patients for optimal disease management while reducing costs.

Clinical Impact

LungQ displayed clinical impact by:

  1. Reducing anaesthesia-induced bronchoscopic interventions by 81.5% for COPD cases.
  2. Reducing the time to analyze cystic fibrosis images from days to minutes.

Expertise and Future Plans

With medical and technical expertise, Thirona has the capabilities to lay the foundation for a scalable and groundbreaking AI platform in lung care.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.499.999
Totale projectbegroting€ 4.756.250

Tijdlijn

Startdatum1-10-2023
Einddatum30-9-2025
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • THIRONA BVpenvoerder

Land(en)

Netherlands

Vergelijkbare projecten binnen EIC Accelerator

EIC Accelerator

Development and commercialisation of a novel needle tract sealant system for pneumothorax prevention during lung biopsy

The Selio System aims to prevent pneumothorax during lung biopsies by pre-sealing the needle tract, enhancing patient safety and reducing healthcare costs.

€ 2.499.999
EIC Accelerator

Empowering Radiologists in Cancer Diagnostics with Artificial Intelligence

Better Medicine AI automates repetitive tasks in cancer CT scan analysis, reducing radiologist workload by 40-60% to improve diagnostic accuracy and address the radiologist shortage.

€ 2.499.875
EIC Accelerator

The first IVDR-approved commercial software solutions for AI-powered RNA-based companion and precision cancer diagnostics of acute myeloid leukaemia and bladder cancer

Qlucore aims to revolutionize precision oncology by developing AI-driven diagnostic software for cancer, enhancing accuracy in gene analysis and improving survival rates across Europe.

€ 2.491.650
EIC Accelerator

INNOVATIVE LIQUID BIOPSY METHOD USING LAB-ON-ACHIP TECHNOLOGY FOR CANCER DIAGNOSIS AND MANAGEMENT

JaxBio aims to revolutionize lung cancer diagnosis and treatment with LUMEN, a non-invasive liquid biopsy assay that detects cancer early and predicts treatment response using advanced DNA-chip technology.

€ 2.493.000
EIC Accelerator

Precision biomarker based on digital pathology and artificial intelligence to guide fast and cost-effective personalized treatment decision support for colorectal cancer patients

DoMore Dx offers innovative diagnostics software using deep learning on cancer tissue images to personalize chemotherapy decisions, potentially saving 250,000 patients and 4 billion EUR annually.

€ 2.499.999

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

Decision support system voor medische diagnoses

Nobleo ontwikkelt een AI-gestuurd decision support systeem om medische diagnoses te verbeteren en zorgkosten te verlagen.

€ 20.000
Mkb-innovati...

Haalbaarheidsonderzoek nieuwe vroegdiagnose longkanker technologie d.m.v. “remote data services”

Het project richt zich op het ontwikkelen van een gestandaardiseerde dienst voor longkankerscreening door hoogwaardige beelddata op afstand te analyseren, om vroegtijdige diagnose en behandeling te verbeteren.

€ 19.992
1.1 - Het ve...

Schaalbare AI voor patiënten met pijn op de borst

Het project ontwikkelt een AI-algoritme dat cardiologen ondersteunt bij het aanvragen van CT-scans voor patiënten met pijn op de borst.

€ 795.688
Mkb-innovati...

Multi-tenant applicatie t.b.v. diagnoses in de acute zorg

Het project ontwikkelt een multi-tenant applicatie om artsen in de acute zorg te ondersteunen bij snellere en nauwkeurigere diagnoses.

€ 20.000
ERC Advanced...

Enhancing emergency department safety, efficacy and cost-effectiveness by artificial intelligence

Develop a machine learning-based clinical decision support system for emergency medicine to enhance diagnosis accuracy, patient safety, and cost-effectiveness through validated algorithms and patient data integration.

€ 2.497.200