SKIN-like TWO-Dimensional materials-based elecTRONICS conformable to rough surfaces
SKIN2DTRONICS aims to integrate soft, skin-like electronics on flexible substrates using 2D materials for robust, conformal applications in wearables and health monitoring.
Projectdetails
Introduction
The goal of SKIN2DTRONICS is to demonstrate the large scale integration (LSI, transistor count larger than 1000) of soft and thin (skin-like) electronic devices on ultra-flexible substrates, capable of conformally adapting to any rough and curved surface. This vision will be realized by atomically thin two-dimensional materials (2DMs) that possess compelling properties for this application:
- High electronic performance
- Environmental stability
- Low toxicity and cytotoxicity
- Extreme resilience to mechanical deformations
Urgency of Development
With the increasing pressure towards ubiquitous electronics (wearables, Internet-of-Things, smart patches, etc.), it is urgent to develop electronics that can be easily integrated on the surface of everyday objects and, in the case of health monitoring applications, on a variety of rough biological surfaces.
Current Challenges
Today's conformal electronics is mainly based on conformal sensors with flexible and stretchable electrodes interfaced to bulky silicon chips, responsible for processing. This approach is prone to mechanical failures, especially at the solderings, as the connection between the conformal and solid components remains very challenging.
Research Approach
The research will rely on the complementary conjuncture of four fields:
- Sensors
- 2D-based electronics
- Flexible electronics
- Biomedical engineering
The PIs of the consortium bring expertise in each of these fields and have valuable experience in leading ERC projects.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 9.896.897 |
Totale projectbegroting | € 9.896.897 |
Tijdlijn
Startdatum | 1-5-2025 |
Einddatum | 30-4-2031 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- UNIVERSITA DI PISApenvoerder
- AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS
- ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
- FUNDACIO INSTITUT CATALA DE NANOCIENCIA I NANOTECNOLOGIA
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
3D Printed, Bioinspired, Soft-Matter Electronics based on Liquid Metal Composites: Eco-Friendly, Resilient, Recyclable, and RepairableLiquid3D aims to revolutionize electronics by developing soft, self-healing, and recyclable devices using innovative Liquid Metal composites for sustainable and interactive technology. | ERC COG | € 2.781.215 | 2023 | Details |
Living Therapeutic and Regenerative Materials with Specialised Advanced LayersDeveloping skin-inspired engineered living materials with sensing and regenerative functions for therapeutic and protective applications through multicellular consortia and genetic control. | EIC Pathfinder | € 2.856.441 | 2022 | Details |
Flexible InteligenT NEar-field Sensing SkinsThe FITNESS project aims to develop flexible smart skins using metasurfaces for non-contact touch sensing and far-field communication, enhancing human-robot interaction in robotics and medical applications. | EIC Pathfinder | € 3.603.992 | 2023 | Details |
SKIN MICROBIAL DEVICESSKINDEV aims to develop Smart Skin Microbial Devices for non-invasive monitoring and treatment of atopic dermatitis through innovative sensing technologies and genetic engineering. | EIC Pathfinder | € 1.718.408 | 2023 | Details |
3D Printed, Bioinspired, Soft-Matter Electronics based on Liquid Metal Composites: Eco-Friendly, Resilient, Recyclable, and Repairable
Liquid3D aims to revolutionize electronics by developing soft, self-healing, and recyclable devices using innovative Liquid Metal composites for sustainable and interactive technology.
Living Therapeutic and Regenerative Materials with Specialised Advanced Layers
Developing skin-inspired engineered living materials with sensing and regenerative functions for therapeutic and protective applications through multicellular consortia and genetic control.
Flexible InteligenT NEar-field Sensing Skins
The FITNESS project aims to develop flexible smart skins using metasurfaces for non-contact touch sensing and far-field communication, enhancing human-robot interaction in robotics and medical applications.
SKIN MICROBIAL DEVICES
SKINDEV aims to develop Smart Skin Microbial Devices for non-invasive monitoring and treatment of atopic dermatitis through innovative sensing technologies and genetic engineering.