Winds in galaxies
WINGS aims to determine the impact of black hole-driven outflows on galaxy evolution by integrating observations and simulations to analyze their role in the early Universe.
Projectdetails
Introduction
Massive black holes (BHs) reside at the center of galaxies and release an extraordinary amount of energy during their accretion phase. Such energy drives galaxy-scale gas outflows that can significantly influence the evolution of the host galaxy.
Problem Statement
Despite the remarkable theoretical and observational progress in quantifying the energetics and dynamics of such outflows, establishing their role during the formation and evolution of galaxies remains a long-standing problem in modern astrophysics.
Project Overview
WINGS is designed to finally settle whether outflows driven by BHs are able to shape galaxies and their environment or not. To achieve this goal, we will build up a novel observational and theoretical framework that investigates the role of outflows in the early Universe, when BHs and galaxies are growing at the highest rates and outflows are expected to be more common and powerful, leaving a prominent mark on galaxy evolution.
Observational Access
Thanks to the PI, WINGS will have access to several key observing programs carried out with ALMA and VLT as well as the guaranteed-time observer (GTO) program (~900 hours) with the NIRSpec spectrograph on board the soon-to-launch JWST.
Methodology
By exploiting both observations of local outflows and zoom-in simulations, we will develop a 3D kinematic outflow model that will be an asset in:
- Interpreting existing high-redshift data and upcoming JWST observations.
- Characterizing for the first time outflow properties across cosmic time (up to z~9).
- Identifying feedback signatures in the interstellar and circumgalactic medium properties.
Expected Outcomes
The combination of JWST, ALMA, and VLT observations will enable WINGS to assemble the largest high-spatial resolution survey of multi-phase outflows.
Conclusion
The support from the ERC will be crucial to assemble a unique team mixing the observation-oriented and theory-oriented approach, as a joint effort of observations and simulations is the key to making a major breakthrough in understanding outflows driven by BHs.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.199.519 |
Totale projectbegroting | € 1.199.519 |
Tijdlijn
Startdatum | 1-9-2022 |
Einddatum | 31-8-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- SCUOLA NORMALE SUPERIOREpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
A new View of Young galaxies with ALMA and JWSTThis project aims to uncover hidden stellar populations and map molecular gas in dusty young galaxies using JWST and ALMA data, enhancing our understanding of early galaxy formation. | ERC COG | € 1.997.345 | 2023 | Details |
JWST Breakthrough in Galaxy Formation: Mass Build-up Efficiency at Cosmic DawnSFEER aims to revolutionize our understanding of early galaxy formation by utilizing JWST to analyze the physical properties of massive galaxies during the Epoch of Reionization. | ERC COG | € 1.979.422 | 2023 | Details |
Gas flows in and out of galaxies: solving the cosmic baryon cycleThe FLOWS project aims to elucidate gas flow dynamics in galaxies over cosmic time, enhancing our understanding of galaxy formation and evolution through innovative data analysis and modeling techniques. | ERC ADG | € 2.499.424 | 2024 | Details |
A new View of Young galaxies with ALMA and JWST
This project aims to uncover hidden stellar populations and map molecular gas in dusty young galaxies using JWST and ALMA data, enhancing our understanding of early galaxy formation.
JWST Breakthrough in Galaxy Formation: Mass Build-up Efficiency at Cosmic Dawn
SFEER aims to revolutionize our understanding of early galaxy formation by utilizing JWST to analyze the physical properties of massive galaxies during the Epoch of Reionization.
Gas flows in and out of galaxies: solving the cosmic baryon cycle
The FLOWS project aims to elucidate gas flow dynamics in galaxies over cosmic time, enhancing our understanding of galaxy formation and evolution through innovative data analysis and modeling techniques.