Understanding Dynamic Processes at Nanoscale Working Interfaces for Solar Energy Conversion

DynNano aims to enhance solar-to-chemical energy conversion by using advanced nanoscale techniques to optimize photoelectrochemical systems for efficient, stable, and scalable renewable fuel production.

Subsidie
€ 1.988.500
2023

Projectdetails

Introduction

To slow down global warming and to overcome the reliance on fossil fuels, a transition to a carbon neutral society fueled by renewable energy sources will be crucial. Therefore, the conversion of solar energy to storable, energy-dense fuels will be an important step to satisfy the need for clean and reliable power.

Importance of Solar-to-Chemical Conversion

Economically viable systems for solar-to-chemical conversion often base on thin film photoelectrodes with highly complex internal architectures. The combination of different length scales of fundamental physical processes and inherent film heterogeneities results in a complex micro- and nanoscale behavior, which often controls critical processes of the macroscale device.

Challenges in Characterization

The typical macroscale characterization of material properties conceals important insights into:

  • Structural heterogeneity
  • Compositional heterogeneity
  • Optoelectronic heterogeneity at the nanoscale
  • Local photoelectrochemical reaction processes
  • Material stability

Research Program Overview

To provide a comprehensive portrait of the elementary steps associated with light-to-chemical energy conversion at their natural length scales and under working conditions, DynNano will launch a multimodal research program. This program will leverage a complementary suite of emerging nanoscale techniques for in-situ and operando characterization of energy materials.

Focus on Transition Metal Oxynitride Semiconductors

The approach will be applied to novel transition metal oxynitride semiconductors, which are poised to overcome efficiency and stability limitations of pure oxides and pure nitrides. By thoroughly correlating their nanoscale and macroscale properties, DynNano will establish the link between nanoscale processes and macroscopic performance of photoelectrochemical systems.

Goals and Outcomes

With the gained understanding, DynNano aims at closing the photoelectrochemical cycle at the nanoscale using precisely microstructured photoelectrodes for standalone water splitting. Overall, DynNano will provide the knowledge basis for the rational development of efficient, stable, and scalable solar fuel devices.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.988.500
Totale projectbegroting€ 1.988.500

Tijdlijn

Startdatum1-10-2023
Einddatum30-9-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • TECHNISCHE UNIVERSITAET MUENCHENpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC COG

Dynamic Ions under Nano-Confinement for Porous Membranes with Ultrafast Gas Permeation Control

DYONCON explores the dynamic properties of nanoconfined ions in ionic liquids and MOF films to enhance energy storage efficiency and enable ultrafast gas regulation.

€ 1.995.925
ERC ADG

Photons and Electrons on the Move

This project aims to investigate nanoscale energy transport and charge separation in photosynthesis using advanced imaging and spectroscopy techniques to enhance artificial photosynthesis and solar technology.

€ 2.498.355
ERC COG

PHOTO-INDUCED ELECTRON DYNAMICS AT THE TRANSITION-METAL OXIDE–WATER INTERFACE FROM TIME-RESOLVED LIQUID-JET PHOTOEMISSION

The WATER-X project aims to enhance hydrogen production via photocatalytic water splitting by investigating ultrafast charge dynamics in transition metal oxides using femtosecond laser spectroscopy.

€ 1.998.125
ERC COG

Nanoscale Phovoltaics Laboratory On a Tip

The project aims to develop NanoPLOT, a microscopy platform that combines AFM and ultrafast optical spectroscopy to investigate nanoscale processes in metal halide perovskite solar cells for improved efficiency and stability.

€ 2.976.479