Understanding diversity in decision strategy: from neural circuits to behavior
This project aims to uncover the neural mechanisms behind the brain's flexibility in decision-making strategies during foraging, using advanced computational and electrophysiological methods in mice.
Projectdetails
Introduction
The brain has the remarkable ability to imagine diverse solutions to complex problems and to rapidly switch between them to adapt to new situations. Such properties are essential for adaptive behavior but remain poorly understood, partly due to the prevalent focus in previous studies on stereotypical behaviors. Here, we will adopt a fundamentally different approach by exploring the neural properties underlying diversity in decision strategy, aiming to provide greater insights into how the brain operates in natural conditions.
Methodology
By leveraging novel computational methods that identify changes in behavioral strategy combined with the latest advances in electrophysiological recording and optical manipulation in mice, the overarching goal of the project is to understand how the brain switches between different decision strategies.
Hypothesis
We hypothesize that the brain achieves remarkable flexibility by running multiple decision processes in parallel, allowing animals to select one decision strategy while their brains maintain several alternative solutions readily available for quick adaptation.
Research Questions
We will test this hypothesis through a series of experiments that aim at determining:
- Which neural circuits are involved in strategy selection?
- What neural mechanisms control changes in strategy?
- How to trigger a strategy in neural circuits and behaviors?
Context
We will address these questions using mice in the context of foraging, a fundamental survival behavior shared among all animals, involving the search for resources in dynamic environments.
Expected Outcomes
The project will deliver a rich and unique neural and behavioral dataset, enabling the development of a novel conceptual framework for behavioral flexibility as an adaptive selection mechanism of parallel decision computations. Ultimately, this research will contribute to solving various aspects of the decision-making puzzle and provide a foundation for explaining the diversity in behaviors, including those that deviate from the norm.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.996.415 |
Totale projectbegroting | € 1.996.415 |
Tijdlijn
Startdatum | 1-5-2025 |
Einddatum | 30-4-2030 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
The evolution of neural circuits for navigational decisions - from synapses to behaviorThis project aims to unravel the evolution of decision-making circuits in insect brains by integrating anatomy, connectomics, and behavior to understand their adaptability and complexity. | ERC COG | € 1.999.119 | 2022 | Details |
Higher-order motor control of stochastic behavior in an uncertain environmentMOTORHEAD aims to elucidate how deterministic decision signals in the brain translate into variable motor commands using advanced neuronal recordings in rodents. | ERC COG | € 1.991.725 | 2022 | Details |
Action Selection in the Midbrain: Neuromodulation of Visuomotor SensesThis project aims to investigate how the Superior Colliculus integrates neuromodulatory signals to influence sensory processing and behavior, enhancing understanding of action selection in animals. | ERC COG | € 1.998.430 | 2023 | Details |
The evolution of neural circuits for navigational decisions - from synapses to behavior
This project aims to unravel the evolution of decision-making circuits in insect brains by integrating anatomy, connectomics, and behavior to understand their adaptability and complexity.
Higher-order motor control of stochastic behavior in an uncertain environment
MOTORHEAD aims to elucidate how deterministic decision signals in the brain translate into variable motor commands using advanced neuronal recordings in rodents.
Action Selection in the Midbrain: Neuromodulation of Visuomotor Senses
This project aims to investigate how the Superior Colliculus integrates neuromodulatory signals to influence sensory processing and behavior, enhancing understanding of action selection in animals.