The Multitudes of Mosquito Viruses and Their Impact on Arbovirus Disease Ecology

This project aims to explore the biology and ecology of mosquito-specific viruses to understand their interactions with arboviruses and mosquitoes, potentially improving arbovirus transmission control.

Subsidie
€ 1.500.000
2025

Projectdetails

Introduction

The mosquito virome constitutes not only human pathogenic arthropod-borne viruses (arboviruses) but also mosquito-specific viruses, whose host range is restricted to the mosquito. While metagenomics studies have revealed the mosquito virome to be richly diverse and abundant, our knowledge of these viruses is mostly limited to genome sequence information.

Knowledge Gaps

We have little insight into their biology and interactions with the mosquito host. Importantly, the cellular and immunological mechanisms by which mosquitoes deal with multitudes of concurrent viral infections remain to be understood. Furthermore, mosquito-specific viruses have been reported to inhibit or enhance co-infecting arboviruses, leading to substantial interest in leveraging these viruses as a tool to influence the transmission of deadly human pathogenic arboviruses, such as dengue virus.

Project Overview

Through MULTITUDES, I will take the first steps in exploring the fundamental biology and ecology of mosquito-specific viruses and their virus-host interactions using established techniques from classical medical entomology to omics approaches. My hypothesis-driven aims are to:

  1. Characterise the biological properties of mosquito-specific viruses.
  2. Investigate the heritability and fitness cost of mosquito-specific viruses.
  3. Examine the metabolic interactions between mosquito-specific viruses, arboviruses, and mosquito hosts.

Significance

Given that mosquito-specific viruses are an inextricable part of arbovirus disease ecology, the insights revealed during this project will contribute towards a deeper understanding of mosquito-borne disease transmission under the One Health concept.

Future Implications

As such, the knowledge generated has the potential to identify opportunities for improved arbovirus transmission risk mapping and for the future development of virome modification-based biological control interventions against arbovirus transmission.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.500.000
Totale projectbegroting€ 1.500.000

Tijdlijn

Startdatum1-3-2025
Einddatum28-2-2030
Subsidiejaar2025

Partners & Locaties

Projectpartners

  • INSTITUT PASTEURpenvoerder

Land(en)

France

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

Mobile Bio-Lab to support first response in Arbovirus outbreaks

MOBVEC aims to develop the first VBD Mobile Bio-Lab to provide real-time vector surveillance and disease modeling, enhancing outbreak response and saving lives and healthcare costs.

€ 2.998.500
ERC ADG

PIWI-interacting RNAs at the interface of virus-host conflicts in Aedes aegypti mosquitoes

This project aims to explore the role of piRNAs in protecting mosquito germlines from viruses, enhancing understanding of virus-host interactions and developing strategies for mosquito-borne virus resistance.

€ 2.500.000
ERC ADG

Evolutionary immunology: using insect models to unravel STING-dependent conserved and innovative antiviral strategies

This project aims to explore antiviral gene diversity in insects, leveraging cGAMP-triggered responses in Drosophila to identify novel antiviral mechanisms for potential therapeutic applications.

€ 2.396.099