The Chromite Record of Mafic Crustal Growth

This project aims to analyze detrital chromite in ancient sedimentary rocks to reconstruct Earth's early mafic crustal growth and enhance understanding of crustal evolution.

Subsidie
€ 1.499.536
2023

Projectdetails

Introduction

Understanding Earth's crustal growth is crucial to understanding the evolution of its tectonics, the birth of the first continents, and the fundamental changes that transformed Earth into a habitable planet. However, much of our understanding of Earth's crustal growth is predicated on a single mineral - zircon - that is strongly biased towards detecting felsic crustal growth.

Problem Statement

This is particularly problematic for the early Earth, where average crustal compositions were far more mafic than today, and the very first protocrust may be entirely undetectable using conventional methods.

Proposed Solution

I propose to access the mafic to ultramafic crustal growth record using detrital chromite preserved in sedimentary rocks from Archaean Cratons. Like zircon, chromite chemical compositions reflect the magmas that they crystallised from, and can be used to identify the provenance of the mafic portions of a sedimentary rock. Furthermore, they can be dated using Re-Os isotopes, to identify the age of eroded mafic terranes.

Project Objectives

This project has three main objectives:

  1. Develop techniques to identify the age and composition of chromite sources in ancient sedimentary rocks.
  2. Use a range of detrital chromite samples from sedimentary sequences in the Superior Craton, to reconstruct a mafic-ultramafic crustal growth curve for the craton.
  3. Search for evidence of Earth's mafic protocrust in some of the oldest known chromite-bearing sedimentary rocks.

Expected Outcomes

These achievements will open a new avenue for studying sedimentary provenance, unlock the archive of mafic crustal growth throughout Earth history, and provide insights on the nature and survival of Earth's earliest crust. The techniques developed will be broadly applicable, paving the way for a better understanding of Earth's crustal evolution.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.499.536
Totale projectbegroting€ 1.499.536

Tijdlijn

Startdatum1-10-2023
Einddatum30-9-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • KOBENHAVNS UNIVERSITETpenvoerder

Land(en)

Denmark

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC COG

Quantifying the formation and evolution of the Archaean lithospheric mantle

LITHO3 aims to uncover the depth of Archean mantle melting and the origins of silica enrichment in cratonic lithosphere through advanced analysis of orthopyroxenes and experimental modeling.

€ 1.944.116
ERC COG

Deep Earth’s Oxygen recycling at subduction Zones

The OZ project aims to quantify fluid interactions in subduction zones to understand their role in oxidizing the mantle and generating arc magmatism through innovative experimental and modeling approaches.

€ 2.000.000
ERC SyG

The role of silica in the dawn of life on our planet

The PROTOS project aims to simulate Hadean conditions through laboratory experiments to uncover the role of silica in early Earth's organic chemistry and the origin of life.

€ 9.996.000
ERC COG

New isotope tracers of rocky planet forming environments

This project aims to uncover the origins and evolution of precursor materials for terrestrial planets by analyzing chondrules in meteorites using advanced isotopic and imaging techniques.

€ 1.970.878