Sustainable Solid State Sodium Batteries
4SBATT aims to develop sustainable solid-state Na-based batteries with enhanced energy density and safety, leveraging advanced materials science and engineering techniques.
Projectdetails
Introduction
The Li-ion battery, developed in the last 30 years, is a very successful technology. However, it now faces the challenge of powering the e-mobility revolution, requiring a large increase in raw resources availability.
Opportunity for Sustainability
At this point in history, given the roadmap of the European Green Deal and the need to reduce CO2 emissions, such a scale-up should be seen as a unique opportunity to eliminate unsustainable elements from the batteries. Yet the Li-ion battery relies on a series of elements that are critical, most importantly Li, Co, and natural graphite.
Safety and Energy Concerns
Moreover, the safety of Li-ion batteries is often in question, and their energy content still needs to increase to satisfy the demand for extended driving ranges.
Project Goals
In this context, 4SBATT aims to develop a solid-state battery based on Na, rather than Li, representing the best solution in terms of four key parameters:
- Sustainability
- Energy density (specific and volumetric)
- Readiness of adoption (i.e. compatibility with existing Li-ion production lines)
- Safety
Methodology
To achieve such a challenging goal, 4SBATT will operate at the cross-section between inorganic chemistry, materials science, and engineering. My team and I will develop a combined computational and experimental approach based on density functional theory and in situ x-ray diffraction during synthesis that will allow us to explore large amounts of temperature-dependent multicomponent phase diagrams for various classes of materials.
Material Development
Thereby we will design and prepare novel Na-based inorganic compounds for:
- Positive electrodes
- Solid electrolytes
- Negative electrodes
Characterization and Assembly
Then the physical properties of materials and composite electrodes will be characterized to understand, improve, and engineer their performances. Finally, we will assemble solid-state batteries based on Na and sustainable elements such as Fe, Mn, and Si, which are intrinsically safe due to the non-flammable solid electrolyte, and targeting record energy densities of 300 Wh/kg and 750 Wh/l at the cell level.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.813.373 |
Totale projectbegroting | € 1.813.373 |
Tijdlijn
Startdatum | 1-9-2022 |
Einddatum | 31-8-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- UNIVERSITAT BAYREUTHpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MEDIATED BIPHASIC BATTERYThe MeBattery project aims to develop a next-generation flow battery technology that balances sustainability, efficiency, and longevity, using innovative thermodynamic concepts and non-critical materials. | EIC Pathfinder | € 2.508.694 | 2022 | Details |
Electrode assembly from floating nanowires for sustainable next generation batteriesELECTROFLOAT aims to develop a solvent-free method for producing high-capacity silicon anodes for lithium-ion batteries, enhancing energy density and enabling pilot-scale manufacturing by 2030. | ERC POC | € 150.000 | 2023 | Details |
Multi-metal anode: Towards safe and energy dense batteriesMULTIMETALBAT aims to enhance metal anode battery performance and safety by developing multi-cation electrolytes to improve electrodeposition and achieve higher energy densities. | ERC COG | € 1.889.561 | 2023 | Details |
Deconstructing the Electrode-Electrolyte Interface by Novel NMR MethodologyThis project aims to enhance rechargeable battery efficiency by investigating the solid electrolyte interphase (SEI) using advanced NMR techniques to optimize ion transport and design next-generation energy storage systems. | ERC COG | € 2.228.750 | 2025 | Details |
MEDIATED BIPHASIC BATTERY
The MeBattery project aims to develop a next-generation flow battery technology that balances sustainability, efficiency, and longevity, using innovative thermodynamic concepts and non-critical materials.
Electrode assembly from floating nanowires for sustainable next generation batteries
ELECTROFLOAT aims to develop a solvent-free method for producing high-capacity silicon anodes for lithium-ion batteries, enhancing energy density and enabling pilot-scale manufacturing by 2030.
Multi-metal anode: Towards safe and energy dense batteries
MULTIMETALBAT aims to enhance metal anode battery performance and safety by developing multi-cation electrolytes to improve electrodeposition and achieve higher energy densities.
Deconstructing the Electrode-Electrolyte Interface by Novel NMR Methodology
This project aims to enhance rechargeable battery efficiency by investigating the solid electrolyte interphase (SEI) using advanced NMR techniques to optimize ion transport and design next-generation energy storage systems.