Structure and Function-based Design of Vaccine Antigens and Antiviral Immunotherapies
This project aims to revolutionize vaccine antigen design by utilizing nanobody screening and deep learning to extract insights from viral glycoproteins, enhancing efficacy against high-risk viruses.
Projectdetails
Introduction
Vaccines are critical in preventing viral diseases, and recent advances in vaccine development and delivery platforms have enhanced their reach and efficacy. Viral glycoproteins that mediate host cell entry are the primary target of the humoral immune response and thus the main antigenic component of vaccines. However, for many viruses, we lack fundamental biological insights that would easily allow transforming their glycoproteins into highly effective vaccine antigens.
Novel Approach
In this proposal, I introduce a completely novel approach to thoroughly extract structural and functional insights of viral glycoproteins for rational design of superior antigens. By conducting nanobody repertoire screens, I will bypass common constraints encountered in antibody screening, such as immunodominance bias and redundancy.
Comprehensive Mapping
Contrasting with conventional techniques that narrowly target a limited selection of epitopes, my approach promises an exhaustive mapping of glycoprotein surfaces and epitopes. This paradigm shift enables antigen rather than antibody or nanobody characterization.
Structural Dynamics
By determining high-resolution cryoEM structures of nanobodies bound to glycoproteins in transitional states, we will understand their structural dynamics. Equipped with these unparalleled insights, we will harness pioneering deep learning methods to computationally design glycoproteins with enhanced antigenic form and exposed neutralizing surfaces.
Application to High-Risk Viruses
I will showcase this method for viruses with high case fatality rates, including:
- Hendra
- Nipah
- Lassa
- Tick-borne encephalitis
- Borna disease viruses
Conclusion
VaxVision is set to offer a comprehensive framework for the antigen design of these and genetically or structurally related viruses. My work aims to capitalize on the unused potential for vaccine antigen improvement and will provide an innovative workflow for extracting mechanistic insights and leveraging them for vaccine antigen design, with the potential to drive vaccine innovations beyond just viral pathogens.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.525 |
Totale projectbegroting | € 1.499.525 |
Tijdlijn
Startdatum | 1-1-2025 |
Einddatum | 31-12-2029 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- KAROLINSKA INSTITUTETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Multivalent Supramolecular Nanosystems as Dynamic Virus BlockersSupraVir aims to develop self-adaptive supramolecular assemblies that mimic host cell receptors to create universal virus blockers effective against diverse and rapidly mutating viruses. | ERC ADG | € 2.849.138 | 2022 | Details |
Molecular dissection of viral genomes for future antiviral treatmentsThis project aims to identify and characterize virus-encoded transmembrane proteins as novel pharmaceutical targets for antiviral drug discovery and treatment of viral infections. | ERC ADG | € 2.420.301 | 2023 | Details |
Deciphering the nanobiophysics of virus-host interactions in 3D cellular systemsThis project aims to elucidate virus-host interactions during entry in 3D environments using advanced nanotechniques, potentially leading to new antiviral drug discoveries. | ERC COG | € 2.867.346 | 2023 | Details |
PROposing Action to ConTrol and Impede betacoronaVirus EmergenciesDevelop vaccines and monoclonal antibodies targeting subdominant epitopes of SARS-CoV-2 to ensure broad protection against current and future variants, enhancing global pandemic preparedness. | ERC ADG | € 2.498.750 | 2023 | Details |
Multivalent Supramolecular Nanosystems as Dynamic Virus Blockers
SupraVir aims to develop self-adaptive supramolecular assemblies that mimic host cell receptors to create universal virus blockers effective against diverse and rapidly mutating viruses.
Molecular dissection of viral genomes for future antiviral treatments
This project aims to identify and characterize virus-encoded transmembrane proteins as novel pharmaceutical targets for antiviral drug discovery and treatment of viral infections.
Deciphering the nanobiophysics of virus-host interactions in 3D cellular systems
This project aims to elucidate virus-host interactions during entry in 3D environments using advanced nanotechniques, potentially leading to new antiviral drug discoveries.
PROposing Action to ConTrol and Impede betacoronaVirus Emergencies
Develop vaccines and monoclonal antibodies targeting subdominant epitopes of SARS-CoV-2 to ensure broad protection against current and future variants, enhancing global pandemic preparedness.