Spin-momentum locking and correlated phenomena in chiral topological materials

ChiralTopMat aims to explore new properties of chiral topological semimetals using advanced spectroscopy to enable energy-efficient magnetic memory devices through controlled structural modifications.

Subsidie
€ 2.442.508
2024

Projectdetails

Introduction

Chiral topological semimetals are a new class of quantum materials at the intersection of structural and electronic chirality. We discovered the first example of this material class three years ago and have since demonstrated that they host new fermionic quasiparticles without analogue in high-energy physics, which carry large and controllable topological charges.

Research Objectives

ChiralTopMat will go beyond these initial works and aims to discover new extraordinary properties that have only been predicted for these materials but for which experimental evidence remains elusive:

  1. A new form of isotropic parallel spin-momentum locking that can be considered the natural counterpart of Rashba spin-orbit coupling.
  2. New electronic phases that are both correlated and topological.
  3. Interface effects with magnetic materials that could be exploited for new energy-efficient information technology applications.

Methodology

We will achieve these research goals by employing spin- and angle-resolved photoelectron spectroscopy on various energy scales, probing these materials' surface, bulk, and interface electronic structures.

Feasibility and Future Prospects

Whilst the proposed experiments are challenging, our prior work and recent preliminary results have demonstrated their feasibility. If successful, ChiralTopMat will build on these discoveries to search for structure-property relationships that can be used to control these new phenomena by chemical and structural modification.

Vision

We envision that this new understanding will be the basis for future devices that exploit chiral topological semimetals for energy-efficient magnetic memory devices, which use multifold fermions for field-free switching of magnets with perpendicular magnetic anisotropy.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.442.508
Totale projectbegroting€ 2.442.508

Tijdlijn

Startdatum1-1-2024
Einddatum31-12-2028
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EVpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC COG

Tunable Interactions in 2-dimensional Materials for Quantum Matter and Light

This project aims to create a versatile 2D materials platform to explore and realize exotic quantum phases and non-classical light generation through interactions among optical excitations.

€ 2.597.500
ERC ADG

Interplay between Chirality, Spin Textures and Superconductivity at Manufactured Interfaces

SUPERMINT aims to develop a high-performance, non-volatile cryogenic memory using superconductivity and spintronics to enhance quantum computing efficiency through innovative magnetic interfaces.

€ 3.188.750
ERC ADG

Correlation-driven metallic topology

The project aims to discover new correlation-driven gapless topological phases in heavy fermion compounds, establishing design principles and assessing their potential for quantum devices.

€ 3.356.483