Revealing 3D Atomic Structure and Chemistry in Scale-Bridging Volumes via 5D Hyperspectral Electron Tomography

This project aims to revolutionize electron microscopy by developing methods to image large volumes with atomic detail and chemical resolution, enhancing our understanding of material structures and dynamics.

Subsidie
€ 2.300.549
2025

Projectdetails

Introduction

Electron microscopy is essential to understanding structure-property-function relationships in modern materials engineering, condensed matter physics, chemistry, and structural biology. Yet, due to complicated scattering physics, today's electron microscopes can only image tiny volumes with 3D atomic resolution.

Project Overview

Within this project, I will turn the tables by utilizing and inverting the scattering physics to image scale-bridging volumes with atomic detail and chemical superresolution. Combining compressive data-acquisition protocols, state-of-the-art electron optics and detectors, and co-designed computational imaging algorithms will make this possible.

Methodology

I will use tomographic experiments and computationally invert the multiple scattering from multidimensional measurements in scanning transmission electron microscopy to determine 3D atomic structure and chemistry in technologically valuable volumes. This has not been realized yet due to significant bottlenecks in the computational complexity of the underlying algorithms and a lack of experimental automation, which I plan to overcome in this project.

Project Objectives

The project is divided into three main objectives:

  1. Imaging 3D atomic structure in large volumes
  2. Visualizing atomic chemistry in scale-bridging volumes
  3. Profiling 3D atomic structure, chemistry, and dynamics in controlled in-situ experiments across scales

Applications

These methods will be applied to essential materials, including examining single hydrogen atoms at grain boundaries in structural metals and studying concealed, extensive interfaces in modern semiconductor materials.

Final Phase

In the final phase, I will record atomistic movies of material fracture in tungsten and alloys. Fracture is one of the most critical failure modes of structural materials with catastrophic consequences. The details of crack nucleation and propagation through the breaking of bonds are still largely unexplored and will be measured directly and compared with large-scale atomistic simulations.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.300.549
Totale projectbegroting€ 2.300.549

Tijdlijn

Startdatum1-2-2025
Einddatum31-1-2030
Subsidiejaar2025

Partners & Locaties

Projectpartners

  • FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN-NUERNBERGpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000

Vergelijkbare projecten uit andere regelingen

ERC ADG

Phase Contrast STEM for Cryo-EM

This project aims to enhance cryo-electron tomography in biology using high-resolution scanning transmission EM, improving imaging quality and enabling new insights into cellular structures.

€ 2.499.987
ERC COG

Enabling spatially-resolved mapping of electric activity in operational devices at atomic-resolution

The project aims to develop a novel technique for operando electron beam-induced current imaging in RRAM devices, enabling real-time visualization of electrical activity at atomic resolution.

€ 2.082.500
ERC COG

Advanced X-ray Energy-sensitive Microscopy for Virtual Histology

This project aims to develop a prototype phase-contrast micro-CT scanner for non-invasive 3D histology to enhance volumetric analysis of tissue samples, particularly lung lesions.

€ 2.000.000
ERC SyG

4D scanning transmission electron microscopy for structural biology

This project aims to develop advanced 4D-BioSTEM methodologies for cryo-EM to enhance contrast and resolution, enabling structure determination of small proteins and complex biological samples.

€ 7.489.397