Revealing 3D Atomic Structure and Chemistry in Scale-Bridging Volumes via 5D Hyperspectral Electron Tomography
This project aims to revolutionize electron microscopy by developing methods to image large volumes with atomic detail and chemical resolution, enhancing our understanding of material structures and dynamics.
Projectdetails
Introduction
Electron microscopy is essential to understanding structure-property-function relationships in modern materials engineering, condensed matter physics, chemistry, and structural biology. Yet, due to complicated scattering physics, today's electron microscopes can only image tiny volumes with 3D atomic resolution.
Project Overview
Within this project, I will turn the tables by utilizing and inverting the scattering physics to image scale-bridging volumes with atomic detail and chemical superresolution. Combining compressive data-acquisition protocols, state-of-the-art electron optics and detectors, and co-designed computational imaging algorithms will make this possible.
Methodology
I will use tomographic experiments and computationally invert the multiple scattering from multidimensional measurements in scanning transmission electron microscopy to determine 3D atomic structure and chemistry in technologically valuable volumes. This has not been realized yet due to significant bottlenecks in the computational complexity of the underlying algorithms and a lack of experimental automation, which I plan to overcome in this project.
Project Objectives
The project is divided into three main objectives:
- Imaging 3D atomic structure in large volumes
- Visualizing atomic chemistry in scale-bridging volumes
- Profiling 3D atomic structure, chemistry, and dynamics in controlled in-situ experiments across scales
Applications
These methods will be applied to essential materials, including examining single hydrogen atoms at grain boundaries in structural metals and studying concealed, extensive interfaces in modern semiconductor materials.
Final Phase
In the final phase, I will record atomistic movies of material fracture in tungsten and alloys. Fracture is one of the most critical failure modes of structural materials with catastrophic consequences. The details of crack nucleation and propagation through the breaking of bonds are still largely unexplored and will be measured directly and compared with large-scale atomistic simulations.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.300.549 |
Totale projectbegroting | € 2.300.549 |
Tijdlijn
Startdatum | 1-2-2025 |
Einddatum | 31-1-2030 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN-NUERNBERGpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Phase Contrast STEM for Cryo-EMThis project aims to enhance cryo-electron tomography in biology using high-resolution scanning transmission EM, improving imaging quality and enabling new insights into cellular structures. | ERC ADG | € 2.499.987 | 2022 | Details |
Enabling spatially-resolved mapping of electric activity in operational devices at atomic-resolutionThe project aims to develop a novel technique for operando electron beam-induced current imaging in RRAM devices, enabling real-time visualization of electrical activity at atomic resolution. | ERC COG | € 2.082.500 | 2024 | Details |
Advanced X-ray Energy-sensitive Microscopy for Virtual HistologyThis project aims to develop a prototype phase-contrast micro-CT scanner for non-invasive 3D histology to enhance volumetric analysis of tissue samples, particularly lung lesions. | ERC COG | € 2.000.000 | 2023 | Details |
4D scanning transmission electron microscopy for structural biologyThis project aims to develop advanced 4D-BioSTEM methodologies for cryo-EM to enhance contrast and resolution, enabling structure determination of small proteins and complex biological samples. | ERC SyG | € 7.489.397 | 2024 | Details |
Phase Contrast STEM for Cryo-EM
This project aims to enhance cryo-electron tomography in biology using high-resolution scanning transmission EM, improving imaging quality and enabling new insights into cellular structures.
Enabling spatially-resolved mapping of electric activity in operational devices at atomic-resolution
The project aims to develop a novel technique for operando electron beam-induced current imaging in RRAM devices, enabling real-time visualization of electrical activity at atomic resolution.
Advanced X-ray Energy-sensitive Microscopy for Virtual Histology
This project aims to develop a prototype phase-contrast micro-CT scanner for non-invasive 3D histology to enhance volumetric analysis of tissue samples, particularly lung lesions.
4D scanning transmission electron microscopy for structural biology
This project aims to develop advanced 4D-BioSTEM methodologies for cryo-EM to enhance contrast and resolution, enabling structure determination of small proteins and complex biological samples.