Reactive fluids for intensified thermal energy conversion
The REACHER project aims to enhance thermodynamic cycle performance by using reactive working fluids to simultaneously convert thermal and chemical energy, optimizing energy efficiency in power and refrigeration systems.
Projectdetails
Introduction
Thermal engines, refrigeration systems, and heat pumps rely on thermodynamic cycles, in which an inert working fluid converts input thermal and mechanical energies into another useful energy form (work or heat) by cyclically transforming its thermal energy content.
Performance Limitations
Although the selection of the working fluid is the main lever to increase their performances, whatever the fluid is, recorded efficiencies remain far below the highest achievable ones. This deficiency is strongly affecting the exploitation of waste heat and renewable thermal energies by closed power cycles, as well as representing the main cause of the slow performance improvement of heat pumps and cooling technologies.
Proposed Solution
With the aim to effectively increase the performances of thermodynamic cycles, I propose to investigate a radically new thermodynamic structure, resulting from the use of equilibrated reactive working fluids instead of inert ones. Preliminary calculations have indeed shown that the simultaneous conversion of the thermal and chemical energy of reactive fluids may result in the intensification of these energy conversion processes.
Methodology
This project applies an original methodology that integrates thermodynamic and kinetic predictive tools to discover and characterize suitable reactive fluids. This allows for:
- The quantification of the effects of reaction features on cycle performance.
- The optimization of the cycle’s configuration.
Innovative Character
The novelty of such a solution approach and comprehensiveness of the applied methodology builds the innovative character of REACHER. Probably due to the complex multi-disciplinarity of the problem or to the negligence of this possible way to convert chemical energy in thermodynamic cycles, this field has remained substantially unexplored.
Expected Outcomes
The successful development of REACHER will provide the fundamental understanding of how chemical energy can be efficiently exploited in the intensification of thermodynamic cycles for power, refrigeration, and heating purposes.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.436.088 |
Totale projectbegroting | € 1.436.088 |
Tijdlijn
Startdatum | 1-4-2022 |
Einddatum | 31-3-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- UNIVERSITE DE LORRAINEpenvoerder
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Medium to long term thermal energy storage system with embedded heat pumping capabilityDevelop a medium-temperature Thermal Energy Storage System to enhance energy efficiency and decarbonize the manufacturing sector by utilizing waste heat and improving sector coupling. | EIC Pathfinder | € 3.145.242 | 2023 | Details |
Highly Efficient Reactor for Conversion of CO2 and H2O to Carbon Neutral Fuels and ChemicalsThe project aims to develop a modular reactor technology for synthesizing carbon-neutral fuels and chemicals from CO2 and H2O using renewable energy, promoting sustainability and industrial integration. | EIC Pathfinder | € 2.250.500 | 2023 | Details |
For Tunable Thermochemical Energy Storage4TunaTES aims to develop a flexible Thermo-Chemical Energy Storage technology that adapts to various applications, reducing R&D costs by 90% and unlocking thermal energy storage potential. | EIC Pathfinder | € 2.779.713 | 2024 | Details |
Elastocaloric COoling and HEAT-pumpingThe E-CO-HEAT project aims to advance elastocaloric technology for heating and cooling by enhancing device readiness, conducting industry testing, and developing a business model for market introduction. | ERC POC | € 150.000 | 2024 | Details |
Medium to long term thermal energy storage system with embedded heat pumping capability
Develop a medium-temperature Thermal Energy Storage System to enhance energy efficiency and decarbonize the manufacturing sector by utilizing waste heat and improving sector coupling.
Highly Efficient Reactor for Conversion of CO2 and H2O to Carbon Neutral Fuels and Chemicals
The project aims to develop a modular reactor technology for synthesizing carbon-neutral fuels and chemicals from CO2 and H2O using renewable energy, promoting sustainability and industrial integration.
For Tunable Thermochemical Energy Storage
4TunaTES aims to develop a flexible Thermo-Chemical Energy Storage technology that adapts to various applications, reducing R&D costs by 90% and unlocking thermal energy storage potential.
Elastocaloric COoling and HEAT-pumping
The E-CO-HEAT project aims to advance elastocaloric technology for heating and cooling by enhancing device readiness, conducting industry testing, and developing a business model for market introduction.