Quantum Synthetic Models for Entangled Matter Out of Equilibrium
This project aims to identify and characterize new phases of matter exclusive to NISQ devices by studying quantum circuits and cellular automata, enhancing understanding of many-body physics.
Projectdetails
Introduction
The exceptional features of many-body quantum systems out of equilibrium are intimately connected with the intrinsic limitations we face when simulating their dynamics on a classical computer, as both are a consequence of the fact that quantum matter is entangled. Digital quantum simulators, or quantum computers, promise to overcome these limitations.
Current State of Quantum Computing
However, in the current era of Noisy-Intermediate-Scale-Quantum (NISQ) devices, large-scale fault-tolerant quantum computation is out of reach, making full-fledged quantum simulation an ambitious long-term goal. Still, NISQ devices already provide new horizons and opportunities for fundamental research in many-body physics.
NISQ Devices and Their Potential
Indeed, in their native hardware, they can be conceptualized as qubit systems evolving by discrete gates, measurements, and feedback, giving rise to completely new collective behavior and universal phenomena.
Project Goals
This project has the ambitious goal of finding and theoretically characterizing new phases of matter which are exclusive to NISQ platforms, charting their largely unexplored phenomenology and possibilities.
Research Perspective
Taking on a fundamental perspective, at the intersection of many-body physics and quantum information theory, we will pursue this goal based on the study of synthetic models of quantum circuits and quantum cellular automata (QCA).
Target Results
The target results of this project include:
- Prediction of new dynamical phases arising thanks to the building blocks of NISQ technology and identification of protocols to observe them in existing platforms.
- Deeper understanding of topical but hard problems in many-body physics out of equilibrium, made possible by the simplifying minimal structure of quantum-circuit and QCA models.
Expected Impact
The proposed research is expected to stimulate new synergies between different communities, reflecting the dual nature and interdisciplinary interest of NISQ devices, being both early prototypes for quantum computers and experimental platforms for many-body physics.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.405.750 |
Totale projectbegroting | € 1.405.750 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 31-12-2028 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Verifiying Noisy Quantum Devices at ScaleThis project aims to develop scalable, secure methods for characterizing and certifying quantum devices using interactive proofs, facilitating reliable quantum computation and communication. | ERC COG | € 1.997.250 | 2023 | Details |
Delineating the boundary between the computational power of quantum and classical devicesThis project aims to assess and leverage the computational power of quantum devices, identifying their advantages over classical supercomputers through interdisciplinary methods in quantum information and machine learning. | ERC ADG | € 1.807.721 | 2024 | Details |
Beyond-classical Machine learning and AI for Quantum PhysicsThis project aims to identify quantum many-body problems with significant advantages over classical methods and develop new quantum machine learning techniques to solve them effectively. | ERC COG | € 1.995.289 | 2024 | Details |
Verifiying Noisy Quantum Devices at Scale
This project aims to develop scalable, secure methods for characterizing and certifying quantum devices using interactive proofs, facilitating reliable quantum computation and communication.
Delineating the boundary between the computational power of quantum and classical devices
This project aims to assess and leverage the computational power of quantum devices, identifying their advantages over classical supercomputers through interdisciplinary methods in quantum information and machine learning.
Beyond-classical Machine learning and AI for Quantum Physics
This project aims to identify quantum many-body problems with significant advantages over classical methods and develop new quantum machine learning techniques to solve them effectively.