Quantum Optical MUltidimensional NEtworks
QOMUNE aims to develop a robust Quantum Internet using multidimensional quantum states (qudits) to enhance communication efficiency and coexist with existing telecommunication systems.
Projectdetails
Introduction
Quantum Internet will allow unprecedented applications that will dramatically change our lives, spanning from quantum secured communications to distributed quantum simulations. These applications include:
- Ultra-precise clock synchronisation
- Quantum secured identification
- Efficient distribution of data and energy
- Quantum sensors
- Secure access to quantum devices in the cloud
Technical Limitations
The main technical limitations currently restricting the range of applicability of the quantum internet are:
- The intrinsic rate-distance limit
- The extremely difficult coexistence with the present classical telecommunication infrastructure
Present quantum communication systems mainly use a two-dimensional encoding scheme (qubit) as the information unit, which is very fragile and susceptible to external noise.
Decoherence Challenges
Due to decoherence processes, caused by the interaction with the external environment, the ability of the adopted qubits to remain in superposition and/or in an entangled state is severely jeopardised.
Multidimensional Quantum States
On the contrary, by adopting multidimensional quantum states (qudit), which are by nature more robust to noise owing to their higher information efficiency, the potential to realise the quantum internet is within our grasp.
QOMUNE's Vision
QOMUNE intends to build and test the constituents for a Quantum Internet based on multidimensional quantum states, by combining new technological advances with unconventional quantum interference.
Novel Scheme
QOMUNE envisages a novel scheme for the generation, transmission, and interference of qudits, which are fundamental actions of a quantum network.
Implementation Strategy
Photonic integrated quantum sources combined with multicore deployed fibres and pioneering design of efficient and scalable multidimensional quantum interference will be adopted for the realisation of QOMUNE building blocks.
Objectives and Impact
QOMUNE’s objectives and results will redefine the state-of-the-art of Quantum Internet in terms of tolerance to noise in a realistic scenario and coexistence with the worldwide telecommunication infrastructure.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.498.750 |
Totale projectbegroting | € 1.498.750 |
Tijdlijn
Startdatum | 1-9-2023 |
Einddatum | 31-8-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- UNIVERSITA DEGLI STUDI DI FIRENZEpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
SCALABLE MULTI-CHIP QUANTUM ARCHITECTURES ENABLED BY CRYOGENIC WIRELESS / QUANTUM -COHERENT NETWORK-IN PACKAGEThe QUADRATURE project aims to develop scalable quantum computing architectures with distributed quantum cores and integrated wireless links to enhance performance and support diverse quantum algorithms. | EIC Pathfinder | € 3.420.513 | 2023 | Details |
Quantum Optical Networks based on Exciton-polaritonsQ-ONE aims to develop a novel quantum neural network in integrated photonic devices for generating and characterizing quantum states, advancing quantum technology through a reconfigurable platform. | EIC Pathfinder | € 3.980.960 | 2023 | Details |
QUantum reservoir cOmputing based on eNgineered DEfect NetworkS in trAnsition meTal dichalcogEnidesThis project aims to develop a proof-of-concept for Quantum Reservoir Computing using Quantum Materials defects to create advanced computing devices and enhance Quantum Technologies. | EIC Pathfinder | € 2.675.838 | 2024 | Details |
Industry-grade Quantum Memory Links enabling the Quantum InternetQMLINK aims to develop industry-grade quantum memory links for a Quantum Internet, enhancing secure communication and distributed computing with high efficiency and long storage times. | EIC Transition | € 2.499.375 | 2024 | Details |
SCALABLE MULTI-CHIP QUANTUM ARCHITECTURES ENABLED BY CRYOGENIC WIRELESS / QUANTUM -COHERENT NETWORK-IN PACKAGE
The QUADRATURE project aims to develop scalable quantum computing architectures with distributed quantum cores and integrated wireless links to enhance performance and support diverse quantum algorithms.
Quantum Optical Networks based on Exciton-polaritons
Q-ONE aims to develop a novel quantum neural network in integrated photonic devices for generating and characterizing quantum states, advancing quantum technology through a reconfigurable platform.
QUantum reservoir cOmputing based on eNgineered DEfect NetworkS in trAnsition meTal dichalcogEnides
This project aims to develop a proof-of-concept for Quantum Reservoir Computing using Quantum Materials defects to create advanced computing devices and enhance Quantum Technologies.
Industry-grade Quantum Memory Links enabling the Quantum Internet
QMLINK aims to develop industry-grade quantum memory links for a Quantum Internet, enhancing secure communication and distributed computing with high efficiency and long storage times.