Quantum Information Processing in High-Dimensional Ion Trap Systems
This project aims to develop a trapped-ion quantum processor utilizing multi-level qudits to enhance quantum information processing and achieve quantum advantage over classical systems.
Projectdetails
Introduction
Quantum processors have taken the binary paradigm of classical computing to the quantum realm and are starting to outperform the best classical devices. Yet, neither the underlying quantum information carriers, nor many of the targeted problems naturally fit into this two-level paradigm.
Project Aim
In this project, I aim to break this paradigm. Instead of restricting the rich Hilbert space of trapped ions to only two levels, the proposed research will make full use of the multi-level (qudit) structure as a resource for quantum information processing. This will unlock unused potential within quantum processors and bring near-term intermediate-scale quantum devices into a regime well beyond classical capabilities.
Rethinking Quantum Information Processing
Furthermore, the availability of high-performing qudit quantum hardware will stimulate a rethinking of the way we approach quantum information processing. This ambitious goal will be achieved by designing and implementing a trapped-ion quantum processor, tailored for qudits.
Device Development
Building on the full toolbox of atomic physics, this device will benefit from ongoing developments for binary systems, while featuring significantly extended capabilities, including novel ways of interacting qudits for resource-efficient processing.
Objectives
Using this hardware, we aim to achieve two objectives:
- Develop tools for and demonstrate native qudit quantum information processing from simulation to computation.
- Show that the platform outperforms not only qubit systems but also the best classical devices through the demonstration of a quantum advantage.
Broader Impact
I am convinced that this project will stimulate a number of research directions beyond its immediate goals, including:
- Application-tailored quantum computing
- Advanced quantum communication
- Quantum metrology
Personal Background
My strong background in several quantum technology platforms, as well as my track record in (multi-level) quantum information processing, puts me in a unique position to realize the ambitious goals of this project.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.790 |
Totale projectbegroting | € 1.499.790 |
Tijdlijn
Startdatum | 1-1-2023 |
Einddatum | 31-12-2027 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- UNIVERSITAET INNSBRUCKpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
New superconducting quantum-electric device concept utilizing increased anharmonicity, simple structure, and insensitivity to charge and flux noiseConceptQ aims to develop a novel superconducting qubit with high fidelity and power efficiency, enhancing quantum computing and enabling breakthroughs in various scientific applications. | ERC ADG | € 2.498.759 | 2022 | Details |
SCALABLE MULTI-CHIP QUANTUM ARCHITECTURES ENABLED BY CRYOGENIC WIRELESS / QUANTUM -COHERENT NETWORK-IN PACKAGEThe QUADRATURE project aims to develop scalable quantum computing architectures with distributed quantum cores and integrated wireless links to enhance performance and support diverse quantum algorithms. | EIC Pathfinder | € 3.420.513 | 2023 | Details |
Delineating the boundary between the computational power of quantum and classical devicesThis project aims to assess and leverage the computational power of quantum devices, identifying their advantages over classical supercomputers through interdisciplinary methods in quantum information and machine learning. | ERC ADG | € 1.807.721 | 2024 | Details |
Beyond-classical Machine learning and AI for Quantum PhysicsThis project aims to identify quantum many-body problems with significant advantages over classical methods and develop new quantum machine learning techniques to solve them effectively. | ERC COG | € 1.995.289 | 2024 | Details |
New superconducting quantum-electric device concept utilizing increased anharmonicity, simple structure, and insensitivity to charge and flux noise
ConceptQ aims to develop a novel superconducting qubit with high fidelity and power efficiency, enhancing quantum computing and enabling breakthroughs in various scientific applications.
SCALABLE MULTI-CHIP QUANTUM ARCHITECTURES ENABLED BY CRYOGENIC WIRELESS / QUANTUM -COHERENT NETWORK-IN PACKAGE
The QUADRATURE project aims to develop scalable quantum computing architectures with distributed quantum cores and integrated wireless links to enhance performance and support diverse quantum algorithms.
Delineating the boundary between the computational power of quantum and classical devices
This project aims to assess and leverage the computational power of quantum devices, identifying their advantages over classical supercomputers through interdisciplinary methods in quantum information and machine learning.
Beyond-classical Machine learning and AI for Quantum Physics
This project aims to identify quantum many-body problems with significant advantages over classical methods and develop new quantum machine learning techniques to solve them effectively.