PrEdicting Nucleation to support next-generation microtechnology: Diffuse Interface, fluctuating hydrodynamics and rare events.
E-Nucl aims to revolutionize fluid dynamics by integrating rare-event techniques with multiphase modeling to enhance understanding of nucleation and phase transitions for advanced microtechnologies.
Projectdetails
Introduction
There is a noticeable trend in simulations of fluid processes to try to be as much as possible multiscale, i.e., to carry out simulations from molecular scale to hydrodynamics. This is made possible by the unprecedented capabilities of parallelization, GPUs, and supercomputing in general, which allow in-silico representation of fluids with billions of degrees of freedom.
Challenges in Phase Transitions
Despite this formidable scientific progress, one crucial aspect still hinders a quantitative description of phase transitions: the way a phase change originates, namely the nucleation process. The elusiveness of this process stems from its strong multiscale nature, involving both atomistic and hydrodynamic scales.
More importantly, as nucleation is a rare event, it inherently involves a broad spectrum of time scales, the most ambitious feature to be characterized. It is also clear that the next technological breakthroughs in phase-change-based microtechnology are limited by the inadequate comprehension of phase transitions.
Current Limitations
As a matter of fact, the fluid dynamic design of frontier microtechnologies is mainly based on empirical ground. Promising two-phase cooling strategies for microelectronics, phase-change-driven micro-robots, synthetic micro-trees, and bio-inspired microstructures for condensation control are typical examples.
Objectives of E-Nucl
Meeting these fundamental and technological needs, the objective of E-Nucl is to provide a holistic understanding of phase change processes in fluids which shall describe both the nucleation inception and its coupling with multiphase hydrodynamics.
Proposed Methodology
Pursuing this goal, E-Nucl advocates a paradigm shift in fluid modelling by combining innovative rare-event techniques based on Large Deviation Theory with the Diffuse Interface and Fluctuating Hydrodynamics modelling of multiphase flows.
Potential Impact
This framework could be a game changer in multiphase fluid dynamics and it will allow the first in-silico high-fidelity trials of archetypal microtechnologies.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.875 |
Totale projectbegroting | € 1.499.875 |
Tijdlijn
Startdatum | 1-4-2025 |
Einddatum | 31-3-2030 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Brownian Motion near Soft InterfacesEMetBrown aims to investigate the effects of thermal fluctuations on Brownian motion near soft interfaces to enhance particle transport and surface patterning methods through experiments and theoretical models. | ERC COG | € 1.999.348 | 2023 | Details |
Generative Understanding of Ultrafast Fluid DynamicsThe project aims to harness ultra-fast fluid dynamics through advanced computational methods to optimize micro-manufacturing and energy conversion, delivering innovative solutions and insights. | ERC ADG | € 2.481.873 | 2023 | Details |
Melting and dissolution across scales in multicomponent systemsThis project aims to quantitatively understand melting and dissolution processes in multicomponent systems through controlled experiments and simulations, linking local measurements to global transport dynamics. | ERC ADG | € 2.500.000 | 2023 | Details |
Interaction of Elasto-inertial Turbulence and material microstructure – INTER-ETThe INTER-ET project aims to advance the understanding of elastic turbulence in complex fluids through innovative simulations and experiments, enhancing mixing and heat transfer for various applications. | ERC COG | € 2.000.000 | 2025 | Details |
Brownian Motion near Soft Interfaces
EMetBrown aims to investigate the effects of thermal fluctuations on Brownian motion near soft interfaces to enhance particle transport and surface patterning methods through experiments and theoretical models.
Generative Understanding of Ultrafast Fluid Dynamics
The project aims to harness ultra-fast fluid dynamics through advanced computational methods to optimize micro-manufacturing and energy conversion, delivering innovative solutions and insights.
Melting and dissolution across scales in multicomponent systems
This project aims to quantitatively understand melting and dissolution processes in multicomponent systems through controlled experiments and simulations, linking local measurements to global transport dynamics.
Interaction of Elasto-inertial Turbulence and material microstructure – INTER-ET
The INTER-ET project aims to advance the understanding of elastic turbulence in complex fluids through innovative simulations and experiments, enhancing mixing and heat transfer for various applications.