Precision oncology of spatial immune escape mechanisms in ovarian cancer

This project aims to exploit tumor genetic drivers of immune escape in high-grade serous ovarian cancer to develop effective immunotherapies through advanced profiling and functional testing of patient-derived organoids.

Subsidie
€ 2.368.459
2023

Projectdetails

Introduction

Tumor progression is dependent on the ability of malignant cells to escape the recognition and attack by the host immune system. The development of more efficient cancer immunotherapies has been hampered by the perplexity of immune escape mechanisms. I hypothesize that tumor genetic drivers dictate the immune escape mechanisms, and that these mechanisms can be exploited to develop more effective immunotherapeutic strategies for patients with high-grade serous ovarian cancer (HGSC), the most common and lethal ovarian cancer.

Methodology

My group has developed an optimized algorithm based on homologous recombination (HR) DNA repair deficiency to enable clinically meaningful stratification of the complex HGSC genotypes. We will define the immunogenicity of the HGSC genotypes via:

  1. Profiling tumor somatic mutations and neoantigens
  2. Analyzing cell-type specific gene expressions
  3. Assessing T/B cell receptor diversities using altogether >600 HGSC samples

Advanced Techniques

Using a cutting-edge highly multiplexed technology and advanced image analysis, we will reveal the single-cell spatial landscapes of the tumor microenvironment in 200 immunogenetically-defined HGSCs. We will apply pioneering spatial analyses on the single-cell data and use artificial intelligence to uncover clinically relevant spatial biology of HGSCs.

Immune-Escape Mechanisms

Via transcriptomic profiling of 384 spatial microregions, we will discover the detailed immune-escape mechanisms of the HGSC genotypes. For functional testing, we have developed a groundbreaking method to establish immune-competent patient-derived organoids (iPDOs), which faithfully recapitulate the patients' tumors.

Functional Testing

Using our high-throughput iPDO functional platform, we will test mechanism-specific immunotherapeutic approaches and capture the treatment responses at single-cell resolution. The discovery and functional targeting of the immune escape mechanisms gives us unprecedented potential to open new horizons in immunotherapeutic targeting of HGSC.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.368.459
Totale projectbegroting€ 2.368.459

Tijdlijn

Startdatum1-2-2023
Einddatum31-1-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • HELSINGIN YLIOPISTOpenvoerder

Land(en)

Finland

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC COG

Cancer cell plasticity on targeted therapy

This project aims to develop innovative cancer therapies by analyzing tumor heterogeneity and targeting drug-tolerant persister cells to prevent resistance and improve patient outcomes.

€ 2.000.000
ERC ADG

Developing novel single-cell technologies to model and perturb intra-tumor interactions and signaling – an innovation program for the next generation of immunotherapies

The TROJAN-Cell project aims to engineer immune responses against tumors by understanding immune-suppressive mechanisms in the tumor microenvironment using advanced single-cell technologies.

€ 2.500.000
ERC COG

Unlocking a T cell-mediated Immune response in therapy-challenged Tumors

UnlockIT aims to develop mechanism-based combination therapies for cancer by understanding tumor-immune interactions and enhancing T cell responses in therapy-challenged tumors.

€ 2.000.000
ERC COG

What doesn’t kill you: primed and adaptive mechanisms of treatment resistance in ovarian cancer

This project aims to develop a novel methodology to identify and target pre-existing resistant cell states in ovarian cancer, enhancing therapy effectiveness through sequential drug combinations.

€ 1.999.754