On-demand COMmunication between fluorescent organic nanoparticles through Energy Transfer
The COMET project aims to develop innovative optical biosensors using communicating fluorescent organic nanoparticles for real-time detection of opioids in complex biological media.
Projectdetails
Introduction
In situ and real-time detection of analytes in complex biological media requires the development of robust and sensitive biosensors. In this context, the interdisciplinary COMET project will develop innovative optical biosensors based on communicating nanoparticles (NPs) whose response is modulated by the presence of opioids.
Challenges with Inorganic Nanoparticles
To date, robust inter-particle communication between optically-active NPs has only been described with inorganics, involving either electron or resonance energy transfer. Despite their excellent optical properties, inorganic NPs raise environmental and biocompatibility concerns with respect to their toxicity or colloidal stability.
Advantages of Fluorescent Organic Nanoparticles
In that regard, Fluorescent Organic Nanoparticles (FONs) are an interesting alternative:
- FONs are composed of organic dyes condensed in a small volume.
- They are engineered to display intense absorption and excellent brightness.
The optimal arrangement of spectrally complementary FONs acting as synergistic energy donors and acceptors will address the critical challenge of achieving communication between NPs and signal amplification.
Methodology
To meet this goal, COMET will reinvent the classical FONs elaboration by investigating the self-assembly of dedicated dyes concomitantly with a biological recognition moiety in water.
- Spectrally relevant FONs will be associated into nano-constructions.
- In these constructions, a donor and an acceptor FON are brought together to enable energy transfer.
I will then design stimuli-responsive biosensors based on the triggered disruption of these nano-assemblies by an analyte, particularly opioids.
Detection Strategy
The detection of nanomolar traces of opioids will be achieved thanks to signal amplification through cascade energy transfers within and between FONs.
Future Implications
Such communicating nano-tools will provide the next generation of continuous ratiometric biosensors. In addition, they will open the way to a new paradigm in excitation energy migration and impact other research fields such as optoelectronics and nanomedicine.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.500.000 |
Totale projectbegroting | € 1.500.000 |
Tijdlijn
Startdatum | 1-2-2023 |
Einddatum | 31-1-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Functional Nanoscale TherapeuticsDevelop functional hybrid nanoscale medicines to enhance intracellular delivery of mRNA and combat nanoscale pathogens, aiming for advanced therapies against diseases like cancer. | ERC ADG | € 2.499.796 | 2024 | Details |
In-situ & operando organiC electrochemical transistors monitored by non-destructive spectroscopies for Organic cmos-like NeuromorphIc CircuitsICONIC aims to advance implantable AI organic electronic devices for chronic disease management by investigating PMIECs, leading to smart drug-delivery systems with enhanced accuracy and safety. | EIC Pathfinder | € 2.664.940 | 2024 | Details |
integrated nano-photonic OMICs bio-SENSor for lung cancerOMICSENS aims to develop a novel nano-photonic omics bio-sensor for real-time detection of TKI resistance in NSCLC, enhancing prognosis and paving the way for personalized cancer treatment. | EIC Pathfinder | € 2.372.318 | 2024 | Details |
A new technology to probe molecular interaction in cells at high throughputThe DiffusOMICS project aims to develop a high-throughput fluorescence-based method to map molecular interactions and detect protein aggregates in neurons for improved drug screening. | ERC POC | € 150.000 | 2024 | Details |
Functional Nanoscale Therapeutics
Develop functional hybrid nanoscale medicines to enhance intracellular delivery of mRNA and combat nanoscale pathogens, aiming for advanced therapies against diseases like cancer.
In-situ & operando organiC electrochemical transistors monitored by non-destructive spectroscopies for Organic cmos-like NeuromorphIc Circuits
ICONIC aims to advance implantable AI organic electronic devices for chronic disease management by investigating PMIECs, leading to smart drug-delivery systems with enhanced accuracy and safety.
integrated nano-photonic OMICs bio-SENSor for lung cancer
OMICSENS aims to develop a novel nano-photonic omics bio-sensor for real-time detection of TKI resistance in NSCLC, enhancing prognosis and paving the way for personalized cancer treatment.
A new technology to probe molecular interaction in cells at high throughput
The DiffusOMICS project aims to develop a high-throughput fluorescence-based method to map molecular interactions and detect protein aggregates in neurons for improved drug screening.