New Sustainable Fe-rich Magnet using a predictive Alloy and Microstructure Design Toolbox
MAG-TOOL aims to develop a sustainable, high-performance magnet by using machine learning to streamline the exploration of SmFe12-based compounds, reducing experiments from 10^8 to 10^2.
Projectdetails
Introduction
Nd-Fe-B magnets are central to both green mobility and the generation of electricity from renewable resources. However, the need to incorporate heavy rare earths like Tb and Dy, which are highly critical raw materials, to operate these magnets above 100 °C (required for electric vehicles and wind turbines) makes them very costly, environmentally damaging, and results in a very fragile value chain. Despite four decades of effort, no practical alternative to Nd-Fe-B has been found.
Background
SmFe12-based compounds have superior intrinsic magnetic properties, actually surpassing those of benchmark Nd-Fe-B, and they do not require additional heavy rare earths. The challenge with SmFe12 is phase instability in the bulk form and the creation of a microstructure that will convert the large intrinsic anisotropy field into usable coercivity.
Research Challenges
What we know so far is that the solution lies in combining multiple alloying elements, each impacting the properties differently. In Sm(Fe,M,X,Z)12, for example, 20 alloying elements result in around 10^8 combinations (experiments) if each element varies from 1 to 15 at.% in quinary compositions.
Project Overview
MAG-TOOL will create a cutting-edge toolbox that combines experimental techniques with state-of-the-art machine-learning algorithms, eliminating the need for trial-and-error. This breakthrough approach drastically reduces the number of experiments from a daunting 10^8 down to a manageable 10^2.
Methodology
MAG-TOOL will achieve this by breaking the multi-element complexity, starting to predict the compounds with useful phases using only three elements. This knowledge will be transferred to multi-element situations and combined with robust experiments to deliver superior magnetic properties in powders and melt-spun ribbons.
Innovation
MAG-TOOL will also include a laser-deposition, additive-manufacturing system for rapidly creating many compositions within the same bulk samples through compositional gradients.
Expected Outcome
The outcome of the project will be the development of new medium- and high-performance sustainable magnets.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.876 |
Totale projectbegroting | € 1.499.876 |
Tijdlijn
Startdatum | 1-3-2025 |
Einddatum | 28-2-2030 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- TECHNISCHE UNIVERSITAT DARMSTADTpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Additive Manufacturing of Amorphous Metals for Soft MagneticsAM2SoftMag aims to revolutionize the manufacturing of high-performance soft-magnetic components via 3D printing, enhancing energy efficiency in electrical machines while promoting sustainability. | EIC Pathfinder | € 3.450.856 | 2022 | Details |
Bulk rare earth free permanent magnetsThe project aims to develop a high-performance, rare-earth-free MnBi permanent magnet using a novel processing route for large-scale industrial applications, enhancing temperature stability and energy efficiency. | ERC POC | € 150.000 | 2022 | Details |
Magnetic alloys and compounds for ultra-high harmonics spin current generationMAGNETALLIEN aims to develop innovative magnetic-based platforms for efficient spin current generation and ultra-high harmonics production, enhancing energy efficiency in data processing and transfer. | ERC COG | € 1.996.550 | 2024 | Details |
Strain-Free All Heusler Alloy JunctionsThis project aims to develop a low-power ferrimagnetic Heusler-alloy film for spintronic devices, utilizing atomic engineering to enhance magnetic properties and simplify production processes. | ERC ADG | € 3.108.441 | 2024 | Details |
Additive Manufacturing of Amorphous Metals for Soft Magnetics
AM2SoftMag aims to revolutionize the manufacturing of high-performance soft-magnetic components via 3D printing, enhancing energy efficiency in electrical machines while promoting sustainability.
Bulk rare earth free permanent magnets
The project aims to develop a high-performance, rare-earth-free MnBi permanent magnet using a novel processing route for large-scale industrial applications, enhancing temperature stability and energy efficiency.
Magnetic alloys and compounds for ultra-high harmonics spin current generation
MAGNETALLIEN aims to develop innovative magnetic-based platforms for efficient spin current generation and ultra-high harmonics production, enhancing energy efficiency in data processing and transfer.
Strain-Free All Heusler Alloy Junctions
This project aims to develop a low-power ferrimagnetic Heusler-alloy film for spintronic devices, utilizing atomic engineering to enhance magnetic properties and simplify production processes.