Molecular Spins for Quantum Technology
MSpin aims to develop a molecular platform for controlling nuclear spins to enhance quantum technologies, enabling robust quantum memory and molecule-photon entanglement for advanced applications.
Projectdetails
Introduction
Defect spins in solids provide a promising platform to realize a range of quantum technologies. Recent advances demonstrated their basic functionalities as quantum network nodes. Yet, the realization of a real-scale quantum network requires solving outstanding challenges posed by the inhomogeneity of elementary systems and decoherence from environmental couplings.
Project Goals
MSpin aims to tackle these challenges employing a bottom-up route. A single molecule sets a compact, nanoscopic stage to house an array of nuclear spins in atomically defined configurations. Accessing and controlling these spins will uncover the tremendous potential of molecules for quantum technology.
Moreover, the toolbox of organic chemistry allows producing identical molecules at large scales and fine-tuning their intrinsic and extrinsic environments.
Research Objectives
With MSpin, I will push the frontiers of single-molecule spectroscopy, single-spin control, and cavity quantum electrodynamics to fully exploit the potential of molecules for quantum technology. The overarching goals are:
- Detect and control single nuclear spins in a molecule and demonstrate for the first time a molecular quantum register.
- Achieve robust nuclear quantum memory hosted in a molecule through deterministic switching of hyperfine coupling, and by harnessing the decoherence-free subspace provided by nuclear spin pairs.
- Realize an efficient molecule-photon interface through strong-coupling to a Fabry-Pérot microcavity and demonstrate the first molecule-photon entanglement.
Impact
The success of MSpin will open an exciting new field on controlling and exploiting spin-photon, spin-spin interactions at the sub-molecular scale. The experimental mastery of these interactions developed through this proposal will not only shine new light on spins in molecular physics and chemistry but also foster an intriguing range of applications in quantum communication, computation, and sensors with unprecedented, sub-molecular resolution.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.893.184 |
Totale projectbegroting | € 1.893.184 |
Tijdlijn
Startdatum | 1-5-2023 |
Einddatum | 30-4-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONNpenvoerder
- UNIVERSITAET KASSEL
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Quantum interfaces with single moleculesQUINTESSEnCE aims to enhance quantum devices by developing interfaces between single photons, spins, and phonons within a single molecule, enabling unprecedented control and new quantum technologies. | ERC COG | € 1.999.993 | 2023 | Details |
Coherent control of spin chains in graphene nanostructuresCONSPIRA aims to synthesize graphene architectures with interacting spin chains to control their quantum states for advancements in quantum computation and condensed matter physics. | ERC ADG | € 2.988.750 | 2024 | Details |
Single Molecule Nuclear Magnetic Resonance Microscopy for Complex Spin SystemsThis project aims to enhance NMR sensitivity to single molecules using scanning probe microscopy, enabling groundbreaking insights in nanotechnology and impacting NMR and SPM markets. | EIC Pathfinder | € 2.994.409 | 2023 | Details |
Quantum interfaces with single molecules
QUINTESSEnCE aims to enhance quantum devices by developing interfaces between single photons, spins, and phonons within a single molecule, enabling unprecedented control and new quantum technologies.
Coherent control of spin chains in graphene nanostructures
CONSPIRA aims to synthesize graphene architectures with interacting spin chains to control their quantum states for advancements in quantum computation and condensed matter physics.
Single Molecule Nuclear Magnetic Resonance Microscopy for Complex Spin Systems
This project aims to enhance NMR sensitivity to single molecules using scanning probe microscopy, enabling groundbreaking insights in nanotechnology and impacting NMR and SPM markets.