Methane paradox revisited: Unravelling the impacts of eutrophication on microbial methane cycling in aquatic ecosystems
The METHANIAQ project aims to quantify aerobic methane production and assess the impact of eutrophication on methane-cycling microorganisms in aquatic ecosystems to better understand methane emissions.
Projectdetails
Introduction
Aquatic ecosystems are a major source of the potent greenhouse gas methane, accounting for half of the global methane emissions. Biogenic methane is microbially produced in anoxic sediments and typically rapidly consumed by methanotrophic microorganisms, largely limiting emissions to the atmosphere.
The Methane Paradox
However, methane concentrations are often elevated in oxic surface waters of oceans and lakes (“methane paradox”). Aerobic methane production in surface waters might constitute a particularly important source of methane, which, due to its proximity to the atmosphere, might escape the aquatic “microbial methane filter”.
Knowledge Gaps
Yet, we currently lack a comprehensive understanding of the involved processes and microorganisms. Moreover, enhanced eutrophication of coastal ocean and lake ecosystems has been linked to increased methane emissions. Despite the immense importance of methane-cycling microorganisms in controlling emissions from these systems, we know remarkably little about how changes in environmental conditions affect their in situ activities.
Project Objectives
The METHANIAQ project addresses these knowledge gaps by:
- Resolving and quantifying aerobic methane production in surface waters of aquatic ecosystems with different trophic states.
- Unraveling how eutrophication affects methane-consuming microorganisms in water columns of coastal ocean and lake ecosystems.
Methodology
To tackle these objectives, I will use an innovative combination of approaches, comprising:
- In situ measurements of biogeochemical process rates.
- Manipulation experiments under controlled laboratory conditions.
- Cutting-edge molecular methods to analyze microbial communities.
Expected Outcomes
The proposed approaches will provide an integrated view from the scales of enzymes and microorganisms to ecosystem-level processes spanning marine and freshwater ecosystems. I expect this cross-disciplinary project to generate essential insights into methane cycling dynamics in aquatic ecosystems and their effect on the global climate.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.497.792 |
Totale projectbegroting | € 1.497.793 |
Tijdlijn
Startdatum | 1-3-2024 |
Einddatum | 28-2-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- UNIVERSITAT WIENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
CONDUCTIVE MINERALS AS ELECTRICAL CONDUITS IN METHANE CYCLINGThis project investigates how anthropogenic conductive particles influence methane emissions and microbial interactions across various environments, aiming to enhance understanding of methane transformation processes. | ERC Consolid... | € 1.999.760 | 2022 | Details |
Unraveling novel Archaeal Metabolic Pathways impacting Greenhouse Gas EmissionsThis project aims to characterize novel enzyme systems in methanogenic archaea to understand their metabolic capabilities and impact on greenhouse gas emissions, particularly methane and CO2. | ERC Starting... | € 1.485.968 | 2025 | Details |
Microbial interactions driven by organic and inorganic metabolic exchange and their role in present and future biogeochemical cyclesThis project aims to uncover the molecular mechanisms of algal-bacterial interactions in marine ecosystems under climate change to enhance biogeochemical models and inform ocean stewardship policies. | ERC Starting... | € 1.499.999 | 2022 | Details |
An anaerobic native approach to shine Light on C1-cycling biochemistry using Environmental microbial biomass.EnLightEn aims to characterize uncultured anaerobic archaea and their enzymes using native biomass to uncover their role in carbon cycling and microbial biogeochemistry. | ERC Consolid... | € 2.000.000 | 2024 | Details |
Mapping metabolic responses to understand coexistence and community functioningThis project aims to explore how species interactions influence the metabolism of marine phytoplankton, affecting community productivity and responses to biodiversity loss and global warming. | ERC Starting... | € 1.488.550 | 2024 | Details |
CONDUCTIVE MINERALS AS ELECTRICAL CONDUITS IN METHANE CYCLING
This project investigates how anthropogenic conductive particles influence methane emissions and microbial interactions across various environments, aiming to enhance understanding of methane transformation processes.
Unraveling novel Archaeal Metabolic Pathways impacting Greenhouse Gas Emissions
This project aims to characterize novel enzyme systems in methanogenic archaea to understand their metabolic capabilities and impact on greenhouse gas emissions, particularly methane and CO2.
Microbial interactions driven by organic and inorganic metabolic exchange and their role in present and future biogeochemical cycles
This project aims to uncover the molecular mechanisms of algal-bacterial interactions in marine ecosystems under climate change to enhance biogeochemical models and inform ocean stewardship policies.
An anaerobic native approach to shine Light on C1-cycling biochemistry using Environmental microbial biomass.
EnLightEn aims to characterize uncultured anaerobic archaea and their enzymes using native biomass to uncover their role in carbon cycling and microbial biogeochemistry.
Mapping metabolic responses to understand coexistence and community functioning
This project aims to explore how species interactions influence the metabolism of marine phytoplankton, affecting community productivity and responses to biodiversity loss and global warming.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
BioMethaneOxidationHet project onderzoekt de haalbaarheid van een installatiemodule voor het oxideren van laagcalorisch methaangas zonder hulpbrandstoffen, om broeikasgasemissies te verminderen. | Mkb-innovati... | € 20.000 | 2021 | Details |
Decentrale conservering van gefractioneerde aquatische biomassa.Dit project ontwikkelt een nieuw bioraffinageproces voor aquatische biomassa om rotting te voorkomen en efficiëntie te verbeteren, met als doel biobased materialen en stikstofvermindering. | Mkb-innovati... | € 20.000 | 2022 | Details |
BioMethaneOxidation
Het project onderzoekt de haalbaarheid van een installatiemodule voor het oxideren van laagcalorisch methaangas zonder hulpbrandstoffen, om broeikasgasemissies te verminderen.
Decentrale conservering van gefractioneerde aquatische biomassa.
Dit project ontwikkelt een nieuw bioraffinageproces voor aquatische biomassa om rotting te voorkomen en efficiëntie te verbeteren, met als doel biobased materialen en stikstofvermindering.