Mesoscale dissection of neuronal populations underlying cognition
This project aims to map cognitive processing in the brain using a mouse model, employing a zoom-out/zoom-in approach to understand dynamic networks across various cognitive functions.
Projectdetails
Introduction
The brain is responsible for cognition, broadly defined as thinking, by combining mental processes such as sensory integration, perception, and working memory. One of neuroscience’s major challenges is understanding how the brain encodes cognition as a whole.
Challenges in Neuroscience
The biggest obstacle to this goal is the complex nature of the brain, which contains billions of entangled neurons that form a dynamic, ever-changing network.
Proposed Methodology
We propose to use the mouse model to study cognitive processing streams across the brain. By applying a zoom-out/zoom-in approach, we first study cognition at the mesoscale level (i.e., the population level across many areas) and then zoom in and dissect a specific sub-population.
Focus Areas
Importantly, we focus on the dynamic brain-wide networks of different cognitive functions that are modulated within single trials and in each individual mouse.
Hypothesis
We hypothesize that cognitive functions are encoded at the mesoscale level in which information flexibly flows across many brain areas, but with certain motifs and rules.
Objectives
Each objective targets one processing stream and one cognitive function:
- Streams within one cortical hemisphere during sensory integration.
- Streams across cortical hemispheres transferring working memory.
- Streams between cortex and sub-cortex during perception.
Work Packages
In each work package, we will train mice in cognitive behavioral paradigms and perform a zoom-out/zoom-in protocol with the same mouse.
Mesoscale Approach
First, we will implement a mesoscale approach (e.g., wide-field imaging and/or multi-fiber photometry) to outline the processing stream within the cognitive network.
Zoom-In Techniques
Second, we will zoom in to dissect a specific node or edge using multi-area two-photon microscopy, labeling techniques, and optogenetics.
Conclusion
Importantly, these work packages are modulatory and have substantial overlaps, enabling us to obtain a brain-wide cognitive map that will aid in understanding cognition as a whole in both the healthy and the diseased brain.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.500.000 |
Totale projectbegroting | € 1.500.000 |
Tijdlijn
Startdatum | 1-6-2022 |
Einddatum | 31-5-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- THE HEBREW UNIVERSITY OF JERUSALEMpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Mechanisms and Functions of Brain- Body- Environment Interactions in C. elegansThis project aims to investigate how widespread neuronal activity patterns in C. elegans encode movement parameters, enhancing our understanding of sensory-motor transformations in the brain. | ERC ADG | € 3.500.000 | 2023 | Details |
Neuronal implementation of cognitive maps for navigationThis project aims to elucidate the mechanisms of cognitive maps in zebrafish by integrating brain imaging, electron microscopy, and transcriptomics to understand neuronal connectivity and behavior. | ERC SyG | € 9.992.890 | 2025 | Details |
Mechanisms and Functions of Brain- Body- Environment Interactions in C. elegans
This project aims to investigate how widespread neuronal activity patterns in C. elegans encode movement parameters, enhancing our understanding of sensory-motor transformations in the brain.
Neuronal implementation of cognitive maps for navigation
This project aims to elucidate the mechanisms of cognitive maps in zebrafish by integrating brain imaging, electron microscopy, and transcriptomics to understand neuronal connectivity and behavior.