Mechanism, Regulation and Functions of DNA Loop Extrusion by SMC complexes
This project aims to elucidate the molecular mechanisms and regulatory factors of SMC-mediated loop extrusion in DNA, enhancing our understanding of genome organization and its biological implications.
Projectdetails
Introduction
Life and evolution of organisms relies on the maintenance, integration, propagation, and readout of genetic information. This information is stored in chromosomes that have a specific three-dimensional structure, a condensed yet accessible form of DNA that is dynamically folded during the lifespan of cells.
The Mystery of DNA Folding
How DNA is folded within chromosomes has, however, remained a mystery. It has been proposed that this is achieved by a process of loop extrusion in which SMC (Structural Maintenance of Chromosomes) complexes that are multi-subunit ATPases present in all kingdoms of life, including condensin and cohesin, reel DNA into loops, thereby organizing genomic DNA into higher-order structures.
Recent Discoveries
Recent in vitro single-molecule studies, stimulated by our initial discovery on condensin, provided direct evidence that both condensin and cohesin can indeed generate chromatin loops by extrusion. However, the most fundamental questions relating to this process remain unanswered:
- What is the molecular mechanism of loop extrusion?
- How is this process regulated?
- What are the functional roles of SMC-mediated loop extrusion beyond condensation?
Research Objectives
To address these questions, we will synergistically combine our single-molecule loop extrusion assay with correlative light and electron tomography and force spectroscopy to reveal both dynamic and structural aspects of loop extrusion and SMC proteins.
Specific Aims
Specifically, we will resolve:
- How SMC complexes function as molecular motors
- How regulatory factors modulate the kinetics of loop extrusion
- How loop extrusion impacts cellular functions like chromosome segregation and gene recombination, all at the single molecule level.
Long-term Impact
In the long term, our findings will provide vital insights into the basic packaging structure of the genome which directly governs its biological function.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.500.000 |
Totale projectbegroting | € 1.500.000 |
Tijdlijn
Startdatum | 1-4-2023 |
Einddatum | 31-3-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EVpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Understanding emergent physical properties of chromatin using synthetic nucleiThis project aims to bridge in vitro and cellular studies to elucidate how molecular activities of chromatin influence its material properties and nuclear organization through innovative experimental methods. | ERC COG | € 1.999.550 | 2023 | Details |
Structural Basis for Centromere-Mediated Control of Error-free Chromosome SegregationThis project aims to elucidate the mechanisms of chromosome segregation by studying the assembly and function of inner centromeres and their regulatory networks using advanced structural and functional techniques. | ERC ADG | € 2.209.886 | 2023 | Details |
Dependence Of NUcleosome Transactions on SequenceDevelop a novel high-throughput platform to investigate how DNA sequence influences chromatin remodelling dynamics and nucleosome function at the single-molecule level. | ERC ADG | € 2.137.145 | 2023 | Details |
Elucidating the role of biomolecular condensation in meiotic DNA double-strand break formationThis project aims to investigate the role of RMM protein condensation in DNA double-strand break formation during meiosis to enhance understanding of genetic inheritance and cellular organization. | ERC COG | € 1.998.750 | 2024 | Details |
Understanding emergent physical properties of chromatin using synthetic nuclei
This project aims to bridge in vitro and cellular studies to elucidate how molecular activities of chromatin influence its material properties and nuclear organization through innovative experimental methods.
Structural Basis for Centromere-Mediated Control of Error-free Chromosome Segregation
This project aims to elucidate the mechanisms of chromosome segregation by studying the assembly and function of inner centromeres and their regulatory networks using advanced structural and functional techniques.
Dependence Of NUcleosome Transactions on Sequence
Develop a novel high-throughput platform to investigate how DNA sequence influences chromatin remodelling dynamics and nucleosome function at the single-molecule level.
Elucidating the role of biomolecular condensation in meiotic DNA double-strand break formation
This project aims to investigate the role of RMM protein condensation in DNA double-strand break formation during meiosis to enhance understanding of genetic inheritance and cellular organization.