Leveraging Polymer Therapeutics as Nanomedicine for Local Glioblastoma Immunotherapy
GLIOMERS aims to develop a brain-penetrating polymeric drug delivery system to enhance immunotherapy efficacy for glioblastoma by localizing treatment and stimulating antitumor immunity.
Projectdetails
Introduction
Research focusing on cancer immunotherapy has provided little progress toward improved survival rates for patients with glioblastoma (GBM), a poorly immunogenic tumor. Clinical trials for GBM immunotherapy primarily focus on the systemic administration of therapeutics; however, they have shown limited therapeutic success.
Challenges in Immunotherapy
The following factors represent challenges to immunotherapy success:
- The blood-brain barrier
- The tumor immune microenvironment (TIME)
- The extracellular matrix
- The highly invasive/proliferative nature of GBM
- Intra- and inter-patient heterogeneity
Administering polymer therapeutics as a class of biodegradable nanomedicines for localized treatment − a concept I pioneered − represents a less explored area that may fulfill the potential of GBM immunotherapy while reducing doses and adverse systemic effects.
Project Overview
GLIOMERS aims to design an immunomodulatory brain-penetrating polymeric drug delivery system that will exploit its intrinsic therapeutic effect by synergizing with conjugated chemotherapeutic agent(s) to directly stimulate antitumor immunity.
Development of Hybrid Nanocarriers
By encompassing different biomaterials properties, hybrid nanocarriers will be developed using a synthetic microfluidic-assisted approach based on chemically stabilized self-assembled hyaluronic acid – as an immunomodulator – with complementary poly-L-lysine to support brain penetration.
Conjugation and Immune Response
I will capitalize on the properties of this new class of nanocarriers by conjugating chemotherapeutics re-purposed for immunotherapy. This approach will allow not only the local spread of the drug within the GBM but also an additional rewiring of the immunosuppressive TIME with an enhanced T cell-mediated immune response.
Conclusion
GLIOMERS will provide an innovative advance in the design of translational nanomedicines for local brain delivery, contributing to enhanced immunotherapeutic efficacy for GBM treatment.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.498.175 |
Totale projectbegroting | € 1.498.175 |
Tijdlijn
Startdatum | 1-1-2025 |
Einddatum | 31-12-2029 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- UNIVERSITA DEGLI STUDI DI PADOVApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Tumor recurrence and therapeutic resistance: exploring and exploiting the post-radiotherapy brain microenvironment for therapeutic opportunities in malignant brain tumorsThis project aims to target the irradiated microenvironment of recurrent glioblastoma by integrating advanced sequencing methods and high-throughput screening to discover novel therapeutic strategies. | ERC COG | € 1.999.444 | 2022 | Details |
Preclinical validation and market analysis of a microMESH implant for brain cancer eradicationThe project aims to develop and validate a novel drug delivery implant, microMESH, for targeted chemo-immunotherapy in glioblastoma, enhancing treatment efficacy and patient outcomes. | ERC POC | € 150.000 | 2022 | Details |
Modular Targeted Nanoplatform for Immune Cell Regulation and TherapyImmuNovation aims to develop a targeted nano-immunoModulator nanovaccine to enhance antitumor immunity against CEACAM5+ gastrointestinal cancers, offering a safer and more effective treatment alternative. | ERC POC | € 150.000 | 2023 | Details |
Catalysis for Cancer Treatment.Cat4CanCenter aims to develop innovative metal-based catalysts and lipid nanoparticle delivery systems to create effective therapies for glioblastoma, overcoming current treatment challenges. | ERC SyG | € 10.603.994 | 2024 | Details |
Tumor recurrence and therapeutic resistance: exploring and exploiting the post-radiotherapy brain microenvironment for therapeutic opportunities in malignant brain tumors
This project aims to target the irradiated microenvironment of recurrent glioblastoma by integrating advanced sequencing methods and high-throughput screening to discover novel therapeutic strategies.
Preclinical validation and market analysis of a microMESH implant for brain cancer eradication
The project aims to develop and validate a novel drug delivery implant, microMESH, for targeted chemo-immunotherapy in glioblastoma, enhancing treatment efficacy and patient outcomes.
Modular Targeted Nanoplatform for Immune Cell Regulation and Therapy
ImmuNovation aims to develop a targeted nano-immunoModulator nanovaccine to enhance antitumor immunity against CEACAM5+ gastrointestinal cancers, offering a safer and more effective treatment alternative.
Catalysis for Cancer Treatment.
Cat4CanCenter aims to develop innovative metal-based catalysts and lipid nanoparticle delivery systems to create effective therapies for glioblastoma, overcoming current treatment challenges.