It takes two to TAngO2: unravelling the role of syntrophic interactions in the evolution of anaerobic eukaryotes
TAngO2 aims to explore how syntrophic partnerships enable eukaryotes to thrive in low-oxygen environments, using advanced genomic techniques to uncover essential interactions and evolutionary implications.
Projectdetails
Introduction
Living without oxygen is challenging. To live in low-oxygen environments, some microbes exchange nutrients allowing for a division of labor among individuals in a process called ‘syntrophy’. Such interactions are often a prerequisite for prokaryotes living in these environments. Whether syntrophy is necessary for the survival of microbial eukaryotes (protists) is unexplored and yet critically important to discerning the roles of eukaryotes in nature and how eukaryotic cells adapt to live without oxygen.
Project Hypothesis
TAngO2 will test the hypothesis that syntrophic partnerships allow eukaryotes to thrive in anaerobic environments and underpin the evolution of key eukaryotic cell biological characteristics. This will be accomplished using state-of-the-art genomic, computational, and experimental approaches.
Research Methodology
-
Gene Discovery
I will discover genes essential for interactions between a model protist and its ectosymbiont using massively-parallelized transposon mutagenesis. This will discern the molecular mechanisms, metabolic interplay, and selective forces dictating eukaryote:prokaryote interactions. -
Metagenome Delivery
I will deliver metagenomes of cultured anaerobic eukaryote:prokaryote consortia predicted to be engaging in syntrophic interactions. This will drastically expand our knowledge of the biodiversity of eukaryotic genomes and microbial interactions from low-oxygen environments. -
Syntrophy Investigation
I will interrogate the frequency and diversity of syntrophy in eukaryotes by simultaneously sequencing the genomes and transcriptomes of individual protist cells and their microbiota sampled from nature. This will provide the first elucidation of what communities co-exist with natural anaerobic protists.
Significance of the Study
Understanding how syntrophic interactions have influenced eukaryotic cell biology will reveal hidden connections in the complicated functional networks of the eukaryotic cell. TAngO2 will open research avenues by bridging the fields of evolutionary cell biology and microbiology to understand ancient and recent symbiotic relationships.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.657.193 |
Totale projectbegroting | € 1.657.193 |
Tijdlijn
Startdatum | 1-5-2023 |
Einddatum | 30-4-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- LUNDS UNIVERSITETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Mapping vast functional landscapes with single-species resolution: a new approach for precision engineering of microbial consortiaECOPROSPECTOR aims to optimize microbial community composition for enhanced starch hydrolysis using machine learning and evolutionary theories, bridging ecology and biotechnology. | ERC COG | € 1.991.470 | 2023 | Details |
An anaerobic native approach to shine Light on C1-cycling biochemistry using Environmental microbial biomass.EnLightEn aims to characterize uncultured anaerobic archaea and their enzymes using native biomass to uncover their role in carbon cycling and microbial biogeochemistry. | ERC COG | € 2.000.000 | 2024 | Details |
Nitric oxide-driven anaerobic oxidation of lignocelluloseThis project aims to uncover the mechanisms of anaerobic lignocellulose degradation by microbial communities in denitrifying environments, potentially revealing new enzymes that influence carbon and nitrogen cycles. | ERC COG | € 1.999.858 | 2024 | Details |
Harnessing Specialized Metabolism from AnaerobesThe AnoxyGen project aims to explore and harness the unique biosynthetic capabilities of anaerobic bacteria to discover novel metabolites and enhance biotechnological applications for health and ecology. | ERC ADG | € 2.499.859 | 2025 | Details |
Mapping vast functional landscapes with single-species resolution: a new approach for precision engineering of microbial consortia
ECOPROSPECTOR aims to optimize microbial community composition for enhanced starch hydrolysis using machine learning and evolutionary theories, bridging ecology and biotechnology.
An anaerobic native approach to shine Light on C1-cycling biochemistry using Environmental microbial biomass.
EnLightEn aims to characterize uncultured anaerobic archaea and their enzymes using native biomass to uncover their role in carbon cycling and microbial biogeochemistry.
Nitric oxide-driven anaerobic oxidation of lignocellulose
This project aims to uncover the mechanisms of anaerobic lignocellulose degradation by microbial communities in denitrifying environments, potentially revealing new enzymes that influence carbon and nitrogen cycles.
Harnessing Specialized Metabolism from Anaerobes
The AnoxyGen project aims to explore and harness the unique biosynthetic capabilities of anaerobic bacteria to discover novel metabolites and enhance biotechnological applications for health and ecology.