Interrogating RNA-protein interactions underlying SARS-CoV-2 infection and antiviral defense
This project aims to decode RNA-protein interactions in SARS-CoV-2 to understand its replication cycle and identify potential antiviral targets for treating viral diseases.
Projectdetails
Introduction
The global COVID-19 pandemic underscores the need to better understand its causative agent, SARS-CoV-2, and the various other emerging viruses threatening human health. Like many human viruses, SARS-CoV-2 utilizes RNA as its replicated genetic material and its template for translating the virus's proteins.
Research Focus
Ongoing research into SARS-CoV-2 and other RNA viruses has largely focused on understanding the function of their encoded proteins, revealing key roles in host cell entry, viral replication, and immune suppression. In contrast, little is known about the set of viral RNAs and how they interact with host machinery as part of a virus's replication cycle in infected cells.
Discovery
My group discovered a large collection of viral and host proteins that bind the genomic and subgenomic RNAs of SARS-CoV-2 during infection. This collection provides an excellent starting point to work toward the goal of my proposed ERC Starting Grant project: decoding how these interactions shape the viral RNA life cycle and contribute to antiviral defense mechanisms.
Hypothesis
My overarching hypothesis is that SARS-CoV-2 dynamically modulates RNA-protein interactions in the host to facilitate functions of genomic and subgenomic viral RNAs at different stages of the replication cycle.
Research Objectives
To test this hypothesis, I have devised three research objectives:
- Decode mechanisms of host-mediated control over the life cycle of SARS-CoV-2 RNAs.
- Map with temporal resolution which host cell proteins engage each SARS-CoV-2 RNA type.
- Elucidate the role of host proteins that moonlight as RNA binders in SARS-CoV-2 infections.
Expected Outcomes
If successful, this project will identify novel pro- and antiviral host factors in SARS-CoV-2 infections and reveal underlying RNA regulatory mechanisms. In turn, these insights will provide an RNA-centric view of viral infections and identify candidate factors and pathways as therapeutic targets to treat viral diseases.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.500.000 |
Totale projectbegroting | € 1.500.000 |
Tijdlijn
Startdatum | 1-5-2022 |
Einddatum | 30-4-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- JOHANN WOLFGANG GOETHE-UNIVERSITAET FRANKFURT AM MAINpenvoerder
- HELMHOLTZ-ZENTRUM FUR INFEKTIONSFORSCHUNG GMBH
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Dynamics and heterogeneity of early viral infectionThis project aims to enhance imaging technology to study early infection processes of negative-sense RNA viruses, focusing on RSV to understand viral propagation and inform therapeutic strategies. | ERC COG | € 2.000.000 | 2023 | Details |
Traitor-virus-guided discovery of antiviral factorsThis project aims to use CRISPR/Cas9 technology with HIV-1 to uncover antiviral mechanisms, enhancing our understanding and control of viral pathogens for better prevention and therapy. | ERC ADG | € 2.339.875 | 2022 | Details |
Illuminating the enteroviral life cycleThis project aims to develop novel recombinant reporter viruses for real-time imaging of enterovirus life cycle dynamics, enhancing understanding for antiviral drug development. | ERC ADG | € 2.396.392 | 2023 | Details |
Virus Inhibition by siRNA Optimized by NMRThis project aims to develop a novel class of siRNA molecules targeting SARS-CoV-2 variants using structural biology, with potential applications for other pathogenic viruses. | ERC POC | € 150.000 | 2022 | Details |
Dynamics and heterogeneity of early viral infection
This project aims to enhance imaging technology to study early infection processes of negative-sense RNA viruses, focusing on RSV to understand viral propagation and inform therapeutic strategies.
Traitor-virus-guided discovery of antiviral factors
This project aims to use CRISPR/Cas9 technology with HIV-1 to uncover antiviral mechanisms, enhancing our understanding and control of viral pathogens for better prevention and therapy.
Illuminating the enteroviral life cycle
This project aims to develop novel recombinant reporter viruses for real-time imaging of enterovirus life cycle dynamics, enhancing understanding for antiviral drug development.
Virus Inhibition by siRNA Optimized by NMR
This project aims to develop a novel class of siRNA molecules targeting SARS-CoV-2 variants using structural biology, with potential applications for other pathogenic viruses.