Information processing in passive elastic structures
INFOPASS aims to develop ultra-low power, always-on passive speech recognition devices using architected elastic microstructures to enhance battery life and enable zero standby power in smart devices.
Projectdetails
Introduction
Smart devices constantly monitor the environment and analyze the resulting stream of information, waiting for wake-up events ranging from a skipped heartbeat in a pacemaker to a verbal command in an intelligent speaker. In electronic devices, such constant workload requires reliable power and leads to significant battery drainage.
Project Aim
The aim of INFOPASS is to answer the need for zero standby power, always-on sensing and processing, by inventing novel components based on architected elastic microstructures. We will focus on passive speech recognition: vibrating structures that respond with large amplitudes only when excited by a particular spoken word.
Component Design
The components will be based on artificial neural networks of mechanical resonators, benefiting from their ultra-low power dissipation and bypassing the inefficient transduction between acoustic and electric signals.
Challenges in Passive Speech Recognition
The goal of passive speech recognition is challenging due to the required device complexity. Conventional micromechanical systems consist of a few resonators, while neural networks require thousands of nodes, pushing the limits of design and fabrication technologies by orders of magnitude.
Methodology
The proposed work builds on my invention of a two-step structure design method:
- Advanced responses are engineered by first encoding the desired response in an effective mass-spring model.
- This model is then translated into a structural geometry.
Compared to full-wave simulations, mass-spring models speed up the optimization process by more than a thousand-fold, allowing us to 'train' the structures on realistic speech corpuses.
Potential Impact
The invention of devices that passively perform complex information processing tasks will lead to:
- Mobile devices with longer battery life
- Always-on Internet-of-Things devices that consume no standby power
- Battery-less health monitoring sensors
This could potentially impact billions of devices.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.686.875 |
Totale projectbegroting | € 1.686.875 |
Tijdlijn
Startdatum | 1-6-2022 |
Einddatum | 31-5-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- STICHTING NEDERLANDSE WETENSCHAPPELIJK ONDERZOEK INSTITUTENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Micro-meta-structures for computational sensors with built-in memoryThe project aims to develop meta-structures for autonomous sensors with enhanced multistability and computational abilities, revolutionizing smart MEMS with reduced power consumption and increased efficiency. | ERC Starting... | € 2.247.481 | 2025 | Details |
Heterogeneous integration of imprecise memory devices to enable learning from a very small volume of noisy dataThe DIVERSE project aims to develop energy-efficient cognitive computing inspired by insect nervous systems, utilizing low-endurance resistive memories for real-time decision-making in noisy environments. | ERC Consolid... | € 2.874.335 | 2022 | Details |
Inter materials and structures mechanoperception for self learningIMMENSE aims to develop self-learning, adaptive materials and structures that can sense, signal, and react to environmental stimuli, paving the way for innovative applications in various fields. | ERC Advanced... | € 2.500.000 | 2024 | Details |
Novel bio-inspired energy harvesting and storage all-in-one platform for implantable devices based on peptide nanotechnologyDeveloping PepZoPower, a biocompatible energy harvesting and storage device using piezoelectric peptides, to create autonomous, miniaturized power sources for implantable biomedical systems. | ERC Proof of... | € 150.000 | 2022 | Details |
Neuromorphic computing system for real-time signal monitoring and classification with ultra-low-power 2D devicesThis project aims to develop a neuromorphic computing system using 2D semiconductor-based charge trap memory for efficient, low-power detection and classification of electrophysiological signals. | ERC Proof of... | € 150.000 | 2024 | Details |
Micro-meta-structures for computational sensors with built-in memory
The project aims to develop meta-structures for autonomous sensors with enhanced multistability and computational abilities, revolutionizing smart MEMS with reduced power consumption and increased efficiency.
Heterogeneous integration of imprecise memory devices to enable learning from a very small volume of noisy data
The DIVERSE project aims to develop energy-efficient cognitive computing inspired by insect nervous systems, utilizing low-endurance resistive memories for real-time decision-making in noisy environments.
Inter materials and structures mechanoperception for self learning
IMMENSE aims to develop self-learning, adaptive materials and structures that can sense, signal, and react to environmental stimuli, paving the way for innovative applications in various fields.
Novel bio-inspired energy harvesting and storage all-in-one platform for implantable devices based on peptide nanotechnology
Developing PepZoPower, a biocompatible energy harvesting and storage device using piezoelectric peptides, to create autonomous, miniaturized power sources for implantable biomedical systems.
Neuromorphic computing system for real-time signal monitoring and classification with ultra-low-power 2D devices
This project aims to develop a neuromorphic computing system using 2D semiconductor-based charge trap memory for efficient, low-power detection and classification of electrophysiological signals.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Green SELf-Powered NEuromorphic Processing EnGines with Integrated VisuAl and FuNCtional SEnsingELEGANCE aims to develop eco-friendly, light-operated processing technology for energy-efficient IoT applications, utilizing sustainable materials to minimize electronic waste and environmental impact. | EIC Pathfinder | € 3.100.934 | 2024 | Details |
Draadloze pacemaker en slimme monitoringDit project ontwikkelt een draadloze pacemaker met slimme monitoring om patiënten beter te behandelen en zorgkosten te verlagen. | Mkb-innovati... | € 20.000 | 2023 | Details |
Magnetic neural Network for predictive maintenanceGolana Computing aims to develop bio-mimicking magnetic neurons for real-time analog signal analysis, enhancing predictive maintenance in manufacturing while minimizing energy consumption. | EIC Transition | € 2.499.999 | 2023 | Details |
Biointegrable soft actuators alimented by metabolic energyINTEGRATE aims to revolutionize implantable devices by using metabolic energy to power 3D-printed soft actuating materials and an energy-harvesting organ, enhancing autonomy and efficiency. | EIC Pathfinder | € 1.698.750 | 2022 | Details |
actieve geluidsonderdrukking in de gehoorgangHet project richt zich op het ontwikkelen van een open actieve lawaaionderdrukkingstechniek in een kanaalsysteem om geluid met meer dan 90% te reduceren, ondersteund door AI en innovatieve transducers. | Mkb-innovati... | € 20.000 | 2023 | Details |
Green SELf-Powered NEuromorphic Processing EnGines with Integrated VisuAl and FuNCtional SEnsing
ELEGANCE aims to develop eco-friendly, light-operated processing technology for energy-efficient IoT applications, utilizing sustainable materials to minimize electronic waste and environmental impact.
Draadloze pacemaker en slimme monitoring
Dit project ontwikkelt een draadloze pacemaker met slimme monitoring om patiënten beter te behandelen en zorgkosten te verlagen.
Magnetic neural Network for predictive maintenance
Golana Computing aims to develop bio-mimicking magnetic neurons for real-time analog signal analysis, enhancing predictive maintenance in manufacturing while minimizing energy consumption.
Biointegrable soft actuators alimented by metabolic energy
INTEGRATE aims to revolutionize implantable devices by using metabolic energy to power 3D-printed soft actuating materials and an energy-harvesting organ, enhancing autonomy and efficiency.
actieve geluidsonderdrukking in de gehoorgang
Het project richt zich op het ontwikkelen van een open actieve lawaaionderdrukkingstechniek in een kanaalsysteem om geluid met meer dan 90% te reduceren, ondersteund door AI en innovatieve transducers.