Hydrogen Embrittlement mitigation through Layered diffusion patterns in Metals

This project aims to mitigate hydrogen embrittlement in metals through additive manufacturing techniques that tailor hydrogen diffusion, enhancing the durability of components for green hydrogen applications.

Subsidie
€ 1.499.375
2024

Projectdetails

Introduction

Hydrogen embrittlement (HE) of metallic materials is one of the main challenges for the adoption of green H2 as a clean fuel. Degradation of pipelines and vessels is nowadays avoided by conservative design and material selection, but novel mitigation strategies for hydrogen embrittlement will foster cost-effective technologies.

Proposed Strategy

I envisage an Additive Manufacturing strategy to tune hydrogen diffusion as an effective and novel method to mitigate or even suppress HE. The success of this framework requires the reconsideration of modelling and experimental techniques to characterise hydrogen transport and embrittlement in metals.

Background and Methodology

My background in computational mechanics, hydrogen diffusion simulation, and Laser Powder Bed Fusion (LPBF) will guide the approach. The methodology will be enriched by:

  1. Innovative phase tailoring strategies
  2. Advanced computational and optimisation procedures

Tailoring Hydrogen Diffusion

Tailoring hydrogen diffusion in steels will be accomplished by exploiting the enormous difference in diffusivity between fcc and bcc iron phases.

Material Selection

Duplex Stainless Steels (DSS) that combine austenite (fcc) and ferrite (bcc) phases are thus considered as a first option to tune diffusion paths. Additionally, localized nitrogen evaporation to directly control fcc or bcc formation during micro-LPBF of High Nitrogen Steels (HNS) will be achieved by local variation of laser parameters.

Main Goal

The main goal is to protect critical regions and therefore to suppress hydrogen-assisted cracking. To produce shielding effects around stress concentrators, bcc/fcc “helmets” will be optimised by coupled modelling frameworks including hydrogen transport and fracture.

Assessment and Evaluation

Trapping and multiphase diffusion will be assessed by novel modelling procedures from thermal desorption and permeation experimental results. Finally, the effectiveness of the optimised tailored helmets will be evaluated by in-situ testing in gaseous H2, paving the way for resistant components to transport and store high-pressure hydrogen.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.499.375
Totale projectbegroting€ 1.499.375

Tijdlijn

Startdatum1-11-2024
Einddatum31-10-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • UNIVERSIDAD DE BURGOSpenvoerder

Land(en)

Spain

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC COG

Isolation, observation and quantification of mechanisms responsible for hydrogen embrittlement by TRITIum based microMEchanics

TRITIME aims to quantify hydrogen embrittlement mechanisms at the defect level using tritium-based techniques, enhancing understanding for optimizing hydrogen storage and distribution materials.

€ 1.994.136
ERC ADG

Fundamentals of Combustion Safety Scenarios for Hydrogen

SAFE-H2 aims to enhance hydrogen combustion safety through a combination of theory, experiments, and simulations, providing validated models for regulatory frameworks and industry applications.

€ 2.498.191
MIT Haalbaarheid

Haalbaarheid dynamisch verbrandingsmodel voor waterstof

Het project onderzoekt de haalbaarheid van een turbulent verbrandingsmodel voor waterstof/aardgas-mengsels om ultra-lage NOx-emissies te realiseren en de verbrandingseigenschappen te simuleren.

€ 20.000
MIT R&D Samenwerking

Waterstofbrosheid "opgelost": sterkere en duurzamere schroeven

Het project richt zich op het ontwikkelen van een innovatief productieproces voor geharde stalen bevestigingsmaterialen om waterstofbrosheid te verminderen en concurrentiepositie te versterken.

€ 187.775