Hybrid Electrochemically-paired Light Irradiated Organic Synthesis
HELIOS aims to develop paired synthetic photoelectrochemical reactions to efficiently convert abundant feedstocks into valuable complex molecules while enhancing sustainability and selectivity.
Projectdetails
Introduction
The synergy of visible light and electrical energy has been employed for decades in water splitting to hydrogen, but only recently was it used to power the synthesis of higher value complex organic molecules (natural products, pharmaceuticals).
Synthetic Photoelectrochemistry
Synthetic photoelectrochemistry (PEC) is receiving notable attention due to its enhanced scope of redox transformations, sustainability, and selectivity compared to photo- or electrochemistry alone.
Synthetic Electrochemistry
Synthetic electrochemistry (EC) is a useful synthetic tool that replaces atom-uneconomical chemical redox agents with simple electrons and protons. However, in most EC reactions and in all PEC reactions, only one half-reaction of the cell is optimized to generate value; the other half-reaction sacrifices its own electrode or redox additives.
Paired Electrolysis
‘Paired’ electrolysis, where both half-reactions afford useful species, is key to sustainability and efficiency.
Project Goals
HELIOS will discover, develop, and disseminate paired synthetic PEC reactions. Intermediates generated by both half-reactions are converged in novel, creative chemical transformations, including:
- Marriage of radicals or ions generated by each half-reaction to furnish phenethylamines and azetidines, valued pharmaceuticals.
- Ring-fusing reactions that furnish bicyclic scaffolds, toward molecules with high 3D character urgently required in drug discovery.
- Alcohol inversion reactions that are catalytic, environmentally-friendly, and use mild conditions.
Multifunctional Catalysts
‘Multifunctional’ catalysts will be used that can be electro-activated in both cathodic and anodic half-cells, to photochemically generate and stabilize reactive intermediates.
Conclusion
HELIOS i) harnesses electrical and light energy to rapidly convert cheap, abundant chemical feedstocks to value-added complex molecules and ii) improves the sustainability and selectivity of synthetic PEC and EC processes. HELIOS opens an entirely new dimension of chemical reactivity that will revolutionize the way chemists use redox to synthesize molecules.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.828 |
Totale projectbegroting | € 1.499.828 |
Tijdlijn
Startdatum | 1-11-2023 |
Einddatum | 31-10-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- UNIVERSITAET REGENSBURGpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Synthetic Bimodal Photoredox Catalysis: Unlocking New Sustainable Light-Driven ReactivitySYNPHOCAT aims to develop novel bimodal organic photocatalysts for sustainable light-driven transformations of biorelevant molecules through rational design and mechanistic analysis. | ERC Starting... | € 1.920.260 | 2022 | Details |
Enhancing the Potential of Enzymatic Catalysis with LightPHOTOZYME aims to integrate photocatalysis, biocatalysis, and organocatalysis to sustainably produce chiral molecules through innovative photoenzymes and radical reactions. | ERC Advanced... | € 2.945.000 | 2024 | Details |
Metal-Organic REagents for Light-Enabled Shuttling of protons and electronsThis project aims to develop metal-organic PCET shuttles for efficient solar-to-chemical conversion, enhancing selectivity in N2 reduction through innovative catalytic strategies. | ERC Starting... | € 1.498.250 | 2025 | Details |
Design and synthesis of bulk-active polymeric organic electrocatalysts for efficient electroorganic synthesisPolyElectroCAT aims to develop earth-abundant, carbon-based electrode materials for efficient electroorganic synthesis, enhancing selectivity and reducing reliance on precious metals. | ERC Starting... | € 1.500.000 | 2024 | Details |
Tailoring lattice oxygen and photo-induced polarons to control reaction mechanisms and boost catalytic activityPhotoDefect aims to enhance photoelectrochemical reactions by investigating defects and polarons in metal oxide photoelectrodes using advanced in situ techniques to improve efficiency and selectivity. | ERC Starting... | € 1.895.956 | 2023 | Details |
Synthetic Bimodal Photoredox Catalysis: Unlocking New Sustainable Light-Driven Reactivity
SYNPHOCAT aims to develop novel bimodal organic photocatalysts for sustainable light-driven transformations of biorelevant molecules through rational design and mechanistic analysis.
Enhancing the Potential of Enzymatic Catalysis with Light
PHOTOZYME aims to integrate photocatalysis, biocatalysis, and organocatalysis to sustainably produce chiral molecules through innovative photoenzymes and radical reactions.
Metal-Organic REagents for Light-Enabled Shuttling of protons and electrons
This project aims to develop metal-organic PCET shuttles for efficient solar-to-chemical conversion, enhancing selectivity in N2 reduction through innovative catalytic strategies.
Design and synthesis of bulk-active polymeric organic electrocatalysts for efficient electroorganic synthesis
PolyElectroCAT aims to develop earth-abundant, carbon-based electrode materials for efficient electroorganic synthesis, enhancing selectivity and reducing reliance on precious metals.
Tailoring lattice oxygen and photo-induced polarons to control reaction mechanisms and boost catalytic activity
PhotoDefect aims to enhance photoelectrochemical reactions by investigating defects and polarons in metal oxide photoelectrodes using advanced in situ techniques to improve efficiency and selectivity.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Optimised Halide Perovskite nanocrystalline based Electrolyser for clean, robust, efficient and decentralised pRoduction of H2OHPERA aims to develop a proof-of-concept PEC cell for efficient solar-driven H2 production and valorization of industrial waste into valuable chemicals, promoting sustainable energy solutions. | EIC Pathfinder | € 3.229.932 | 2022 | Details |
Nano-Engineered Co-Ionic Ceramic Reactors for CO2/H2O Electro-conversion to Light OlefinsECOLEFINS aims to revolutionize the commodity chemical industry by developing an all-electric process to convert CO2 and H2O into carbon-negative light olefins using renewable energy. | EIC Pathfinder | € 2.519.031 | 2023 | Details |
Electrocatalytic Production of liquid Organic hydrogen carrier and CHemicals from ligninEPOCH aims to revolutionize green hydrogen production and logistics by linking it with liquid organic hydrogen carriers through innovative electrocatalytic processes using lignin derivatives. | EIC Pathfinder | € 3.502.967 | 2022 | Details |
FIRST SMALL-SCALE DEPLOYMENT (FSD) OF A PRE-COMMERCIAL PLANT BASED ON PHOTOELECTROCATALYTIC TECHNOLOGY FOR HYDROGEN PRODUCTIONThe SUN2HY project aims to demonstrate the world's first pre-commercial Photoelectrocatalysis plant for sustainable hydrogen production, targeting 201 tH2/year to support local mobility and reduce CO2 emissions. | Innovation F... | € 4.484.293 | 2022 | Details |
GreenH2 production from water and bioalcohols by full solar spectrum in a flow reactorThis project aims to produce green hydrogen and high-value chemicals from water and biomass using a novel solar-driven process with high efficiency and zero carbon emissions. | EIC Pathfinder | € 2.201.654 | 2022 | Details |
Optimised Halide Perovskite nanocrystalline based Electrolyser for clean, robust, efficient and decentralised pRoduction of H2
OHPERA aims to develop a proof-of-concept PEC cell for efficient solar-driven H2 production and valorization of industrial waste into valuable chemicals, promoting sustainable energy solutions.
Nano-Engineered Co-Ionic Ceramic Reactors for CO2/H2O Electro-conversion to Light Olefins
ECOLEFINS aims to revolutionize the commodity chemical industry by developing an all-electric process to convert CO2 and H2O into carbon-negative light olefins using renewable energy.
Electrocatalytic Production of liquid Organic hydrogen carrier and CHemicals from lignin
EPOCH aims to revolutionize green hydrogen production and logistics by linking it with liquid organic hydrogen carriers through innovative electrocatalytic processes using lignin derivatives.
FIRST SMALL-SCALE DEPLOYMENT (FSD) OF A PRE-COMMERCIAL PLANT BASED ON PHOTOELECTROCATALYTIC TECHNOLOGY FOR HYDROGEN PRODUCTION
The SUN2HY project aims to demonstrate the world's first pre-commercial Photoelectrocatalysis plant for sustainable hydrogen production, targeting 201 tH2/year to support local mobility and reduce CO2 emissions.
GreenH2 production from water and bioalcohols by full solar spectrum in a flow reactor
This project aims to produce green hydrogen and high-value chemicals from water and biomass using a novel solar-driven process with high efficiency and zero carbon emissions.