How do tetraspanin proteins organize, shape, and remodel biological membranes?
This project aims to uncover the mechanisms of cell membrane remodelling involving Tetraspanin proteins to enhance understanding of fertilization and develop treatments for infertility and viral infections.
Projectdetails
Introduction
Our bodies rely on protein-driven shaping and remodelling of our cells’ membranes to function. Uncovering the mechanisms of remodelling of the cell membrane is, therefore, essential for understanding biological processes such as fertilization, but also to allow for precise intervention in them when needed.
Mechanisms of Membrane Remodelling
The interplay between protein position, membrane tension, and local curvature is believed to dictate these processes. However, experimental verifications of this hypothesis in specific biological systems are scarce.
Research Proposal
Here, I propose to apply my expertise in the characterization of mechanical properties and remodelling of membranes to obtain ground-breaking quantitative details of the shaping and remodelling mechanisms in which the Tetraspanin (TSPN) family of proteins are involved.
Importance of Tetraspanins
TSPNs provide an ideal case study for several reasons:
- They are of extreme importance to biological processes such as viral infection.
- They are well characterized by biochemical, genetic, and proteomics approaches.
- Their mode of action is suspected to depend on membrane tension and curvature.
Focus on Migrasomes
Of specific interest is the role of TSPN in the formation of the newly discovered cellular organelles, called migrasomes, which are a new cell-cell communication paradigm.
Methodology
This proposed project addresses TSPN functions by a bottom-up approach, reconstituting the processes of interest from simple building blocks and characterizing the distinguished roles of membrane tension and curvature.
Experimental Techniques
To this end, we will use several new assays based on:
- Combined optical tweezers
- Micropipette aspiration
- Confocal microscopy
- AFM that will operate on crafted membrane model systems.
Expected Outcomes
Our unique experimental approach will allow us to recreate the conditions leading to migrasome formation, egg-sperm, and viral membrane fusion. Revealing the mechanisms underlying these processes will have a direct impact on the development of infertility treatments, non-hormonal contraceptives, and novel anti-viral drugs.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.495.625 |
Totale projectbegroting | € 1.495.625 |
Tijdlijn
Startdatum | 1-4-2023 |
Einddatum | 31-3-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- TEL AVIV UNIVERSITYpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Deciphering Cellular Networks for Membrane Protein Quality Control DecisionsThis project aims to enhance understanding of membrane protein biogenesis and quality control in the endoplasmic reticulum, addressing key questions related to folding, chaperones, and disease mechanisms. | ERC COG | € 1.975.000 | 2023 | Details |
The geometrical and physical basis of cell-like functionalityThe project aims to uncover mechanistic principles for building life-like systems from minimal components using theoretical modeling and in-silico evolution to explore protein patterns and membrane dynamics. | ERC ADG | € 2.498.813 | 2024 | Details |
Time-resolved imaging of membrane transporter dynamics under physiological ionic gradientsThe project aims to develop a microfluidic platform for high-resolution, time-resolved structural studies of membrane proteins under physiological conditions to enhance drug targeting and understanding of cellular functions. | ERC SyG | € 11.178.784 | 2024 | Details |
Deciphering the role of surface mechanics during cell divisionMitoMeChAnics aims to uncover how cell surface mechanics regulate division by using novel molecular tools and interdisciplinary methods to link structure and function at the cellular level. | ERC COG | € 2.200.287 | 2024 | Details |
Deciphering Cellular Networks for Membrane Protein Quality Control Decisions
This project aims to enhance understanding of membrane protein biogenesis and quality control in the endoplasmic reticulum, addressing key questions related to folding, chaperones, and disease mechanisms.
The geometrical and physical basis of cell-like functionality
The project aims to uncover mechanistic principles for building life-like systems from minimal components using theoretical modeling and in-silico evolution to explore protein patterns and membrane dynamics.
Time-resolved imaging of membrane transporter dynamics under physiological ionic gradients
The project aims to develop a microfluidic platform for high-resolution, time-resolved structural studies of membrane proteins under physiological conditions to enhance drug targeting and understanding of cellular functions.
Deciphering the role of surface mechanics during cell division
MitoMeChAnics aims to uncover how cell surface mechanics regulate division by using novel molecular tools and interdisciplinary methods to link structure and function at the cellular level.