FROM SINGLE MOLECULES TO CELL REPROGRAMMING: DECIPHERING AND RECODING DISORDERED PIONEER TRANSCRIPTION FACTORS

This project aims to elucidate the molecular mechanisms of pioneer transcription factors using single-molecule spectroscopy to enhance control over cell fate for therapeutic applications.

Subsidie
€ 1.500.000
2023

Projectdetails

Introduction

Pioneer transcription factors (pTFs) have unique capabilities beyond classical TFs: They can invade and open closed chromatin, initiating cell-fate changes. Their remarkable abilities have been used to steer cell-fate decisions and to induce a pluripotent stem cell state through poorly understood pathways.

Structure of pTFs

Like most TFs, pTFs consist of structured DNA-binding domains (DBDs) flanked by long intrinsically disordered regions (IDRs). In attempts to explain their pioneering functions, intense focus has been on how the structured DBDs of pTFs interact with the nucleosome core particle. Yet, the critical interactions with nucleosomes beyond the core particle, the interplay between DBDs and IDRs, and the molecular mechanism of chromatin invading and opening, remain unclear.

Challenges in Understanding pTFs

The extensive disorder of pTFs places them outside the scope of current structural biology efforts, and understanding their functions therefore requires a different approach.

Methodology

Single-molecule spectroscopy offers a powerful toolbox to monitor dynamic molecular systems and measure their conformational distributions. These methods enable quantitative modeling of distances and dynamics in biomolecules over timescales reaching over 15 orders of magnitude.

Research Position

Building on our recent breakthroughs in single-molecule techniques for studying highly disordered proteins in chromatin regulation and our preliminary data on pTF IDRs, we are in a unique position to apply our expertise to the molecular mechanism of pTFs.

Objectives

Using five established pTFs involved in four distinct cell reprogramming pathways, we intend to:

  1. Map conformational states
  2. Decipher kinetic mechanisms
  3. Engineer new pTFs
  4. Observe chromatin remodelling, both in vitro and within the complex cellular environment.

Conclusion

A molecular-level understanding of pTF functions may break the barrier to fully controlling cell fate, unleashing the enormous medical potential of cell-based therapy.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.500.000
Totale projectbegroting€ 1.500.000

Tijdlijn

Startdatum1-1-2023
Einddatum31-12-2027
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • KOBENHAVNS UNIVERSITETpenvoerder
  • HASKOLI ISLANDS

Land(en)

DenmarkIceland

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC COG

Translational specialization of cellular identity in embryonic development and disease

TRANSCEND aims to explore how translational specialization factors influence cell-fate decisions in embryogenesis, with a focus on cardiac identity and therapeutic restoration of cardiac function.

€ 1.981.555
ERC COG

Systematically Dissecting the Regulatory Logic of Chromatin Modifications

This project aims to systematically investigate the functional impact of chromatin modifications on gene expression using a novel editing platform to enhance precision medicine and understand epigenomic profiles.

€ 1.999.565
ERC COG

Understanding mechanisms of Transcription Factor cooperativity across scales

TFCoop aims to uncover general principles of transcription factor cooperativity in gene regulation through extensive perturbation studies and advanced genomic techniques, enhancing understanding for regenerative medicine.

€ 1.990.221