Exposing Spatio-Temporal structures of turbulence in the Atmospheric Boundary Layer with In-Situ measurements by a fleet of Unmanned Aerial Systems
The ESTABLIS-UAS project aims to enhance understanding of atmospheric boundary layer turbulence using a fleet of unmanned aerial systems for improved weather prediction in complex terrains.
Projectdetails
Introduction
Exchange and transport processes in the atmospheric boundary layer (ABL) are driven by turbulence on a wide range of scales. Their adequate parameterization in numerical weather prediction (NWP) models is essential for a high predictive skill of forecasts. In heterogeneous and complex terrain, the common simplification of turbulence to statistical models does not necessarily hold.
Coherent Structures
Coherent structures such as convective cells, secondary circulations, gusts, slope, and valley flows can be summarized to sub-mesoscale structures which are not well represented in models. A reason for the lack of understanding of these flow features is the challenge to adequately sample their spatio-temporal structure and their contribution to the energy budget of the ABL.
Project Overview
The project ESTABLIS-UAS will provide methods to expose spatio-temporal structures in the ABL with in-situ measurements by a fleet of unmanned aerial systems (UAS). For this purpose, small, rotary-wing UAS will be enabled to measure three-dimensional wind, temperature, and humidity in organized, spatially distributed networks.
Methodology
The project will include a three-fold approach to validate:
- Single UAS measurements
- Fleet observations
- Methods to derive spatial averages and fluxes
Wind tunnel tests, field experiments, and virtual measurements in numerical simulations will be performed.
Campaign Deployment
The validated UAS fleet will be deployed in two campaigns in the framework of the TEAMx research programme, focusing on the mountain boundary layer (MoBL). The ESTABLIS-UAS measurements will fill observational gaps in the sub-mesoscale.
Data Analysis
The analysis of the UAS fleet data in synthesis with ground observations and remote sensing will provide unprecedented new insights into the complex MoBL flow and the components of its energy budget. The results will foster the development of new and better parameterization of the ABL in complex terrain.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.479.205 |
Totale projectbegroting | € 1.479.205 |
Tijdlijn
Startdatum | 1-4-2022 |
Einddatum | 30-9-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT EVpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Real-Time Urban Mobility Management via Intelligent UAV-based SensingURANUS aims to enhance urban mobility management through real-time UAV-based traffic sensing, enabling intelligent monitoring and control of vehicular and pedestrian traffic. | ERC COG | € 1.999.938 | 2023 | Details |
Feedbacks On eXtreme STorms by Ocean tuRbulent MixingThe project aims to deploy autonomous underwater gliders to measure ocean turbulence in extreme storms, enhancing understanding of ocean-storm interactions and improving forecasting models. | ERC COG | € 2.346.039 | 2024 | Details |
Mesoscale organisation of tropical convectionMAESTRO aims to develop observational methods to understand mesoscale convection's impact on climate and improve climate models through advanced airborne remote sensing and analysis frameworks. | ERC ADG | € 2.994.634 | 2023 | Details |
Real-Time Urban Mobility Management via Intelligent UAV-based Sensing
URANUS aims to enhance urban mobility management through real-time UAV-based traffic sensing, enabling intelligent monitoring and control of vehicular and pedestrian traffic.
Feedbacks On eXtreme STorms by Ocean tuRbulent Mixing
The project aims to deploy autonomous underwater gliders to measure ocean turbulence in extreme storms, enhancing understanding of ocean-storm interactions and improving forecasting models.
Mesoscale organisation of tropical convection
MAESTRO aims to develop observational methods to understand mesoscale convection's impact on climate and improve climate models through advanced airborne remote sensing and analysis frameworks.