Exposing Spatio-Temporal structures of turbulence in the Atmospheric Boundary Layer with In-Situ measurements by a fleet of Unmanned Aerial Systems

The ESTABLIS-UAS project aims to enhance understanding of atmospheric boundary layer turbulence using a fleet of unmanned aerial systems for improved weather prediction in complex terrains.

Subsidie
€ 1.479.205
2022

Projectdetails

Introduction

Exchange and transport processes in the atmospheric boundary layer (ABL) are driven by turbulence on a wide range of scales. Their adequate parameterization in numerical weather prediction (NWP) models is essential for a high predictive skill of forecasts. In heterogeneous and complex terrain, the common simplification of turbulence to statistical models does not necessarily hold.

Coherent Structures

Coherent structures such as convective cells, secondary circulations, gusts, slope, and valley flows can be summarized to sub-mesoscale structures which are not well represented in models. A reason for the lack of understanding of these flow features is the challenge to adequately sample their spatio-temporal structure and their contribution to the energy budget of the ABL.

Project Overview

The project ESTABLIS-UAS will provide methods to expose spatio-temporal structures in the ABL with in-situ measurements by a fleet of unmanned aerial systems (UAS). For this purpose, small, rotary-wing UAS will be enabled to measure three-dimensional wind, temperature, and humidity in organized, spatially distributed networks.

Methodology

The project will include a three-fold approach to validate:

  1. Single UAS measurements
  2. Fleet observations
  3. Methods to derive spatial averages and fluxes

Wind tunnel tests, field experiments, and virtual measurements in numerical simulations will be performed.

Campaign Deployment

The validated UAS fleet will be deployed in two campaigns in the framework of the TEAMx research programme, focusing on the mountain boundary layer (MoBL). The ESTABLIS-UAS measurements will fill observational gaps in the sub-mesoscale.

Data Analysis

The analysis of the UAS fleet data in synthesis with ground observations and remote sensing will provide unprecedented new insights into the complex MoBL flow and the components of its energy budget. The results will foster the development of new and better parameterization of the ABL in complex terrain.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.479.205
Totale projectbegroting€ 1.479.205

Tijdlijn

Startdatum1-4-2022
Einddatum30-9-2027
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT EVpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000

Vergelijkbare projecten uit andere regelingen

ERC COG

Real-Time Urban Mobility Management via Intelligent UAV-based Sensing

URANUS aims to enhance urban mobility management through real-time UAV-based traffic sensing, enabling intelligent monitoring and control of vehicular and pedestrian traffic.

€ 1.999.938
ERC COG

Feedbacks On eXtreme STorms by Ocean tuRbulent Mixing

The project aims to deploy autonomous underwater gliders to measure ocean turbulence in extreme storms, enhancing understanding of ocean-storm interactions and improving forecasting models.

€ 2.346.039
ERC ADG

Mesoscale organisation of tropical convection

MAESTRO aims to develop observational methods to understand mesoscale convection's impact on climate and improve climate models through advanced airborne remote sensing and analysis frameworks.

€ 2.994.634