Enantioselective screw-dislocation-mediated growth of chiral nanocrystals
This project aims to investigate the role of screw dislocations in the chiral shape formation of nanocrystals, enhancing our understanding of crystallization and enabling novel applications in material design.
Projectdetails
Introduction
In many scientific disciplines, structural symmetry considerations are key. Specifically, mechanisms by which symmetry translates from atomic and molecular building blocks to crystal structures and shapes attract a great deal of attention. A fascinating aspect of this is related to chirality.
Historical Context
Louis Pasteur’s monumental work, reported in 1848, on the formation of chiral shapes in crystals made from chiral molecules, led to an intuition that chiral building blocks naturally lead to chiral shapes in crystals. Yet, after countless observations ever since of crystals with chiral shapes, mechanisms of their formation are understood to be often more complex and elusive than first imagined.
Proposed Work
In the work proposed here, nanocrystals will serve as convenient model systems for studies of the interplay between crystallization and chiral shape formation. They are beneficial for this purpose as they can mimic “embryonic” stages of crystal growth, exhibiting structural details that can be retrieved at remarkable resolution, which are often hidden in macroscopic crystals.
Focus of the Study
Specifically, I will focus on a universal mechanism by which crystals grow at low concentrations of building blocks, assisted by a common type of imperfections, namely, screw dislocations. I will tackle key unresolved questions on the interplay between chirality, screw dislocations, and crystallization:
- How does screw-dislocation-mediated growth proceed in the presence of chiral additives that can bind to growing crystals, and how do these dislocations even come to be?
- How general is this mechanism, and how often was it overlooked throughout history?
Expected Outcomes
The results obtained in this work, on the one hand, will lead to a general design principle to control nano-scale chirality in many inorganic materials, beneficial for novel applications. On the other hand, they have the potential to elucidate a missing piece of crystal growth theory and lead to a paradigm shift in our understanding of shape chirality in crystals.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.500.000 |
Totale projectbegroting | € 1.500.000 |
Tijdlijn
Startdatum | 1-12-2023 |
Einddatum | 30-11-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- BAR ILAN UNIVERSITYpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Crystals of single chirality via non-equilibrium routesThis project aims to develop a novel method for converting racemic compounds into desired enantiomers by manipulating crystal stability under non-equilibrium conditions, impacting pharmaceutical production. | ERC COG | € 2.415.625 | 2022 | Details |
Chiral separation of molecules enabled by enantioselective optical forces in integrated nanophotonic circuitsCHIRALFORCE aims to revolutionize enantiomer separation for drug discovery using silicon-based integrated waveguides and chiral optical forces for rapid, cost-effective processing. | EIC Pathfinder | € 3.263.726 | 2022 | Details |
Ultrafast molecular chirality: twisting light to twist electrons on ultrafast time scaleThe ULISSES project aims to develop efficient all-optical methods to study and control chiral molecular interactions and electron dynamics using tailored laser polarization techniques. | ERC ADG | € 2.476.743 | 2022 | Details |
Nanohelicoid metamaterials templated by cellulose nanocrystals with end-tethered polymersThe CELICOIDS project aims to develop a new class of chiral metamaterials using cellulose nanocrystal-based liquid crystals to enhance chiral light-matter interactions for advanced applications. | ERC COG | € 1.998.313 | 2023 | Details |
Crystals of single chirality via non-equilibrium routes
This project aims to develop a novel method for converting racemic compounds into desired enantiomers by manipulating crystal stability under non-equilibrium conditions, impacting pharmaceutical production.
Chiral separation of molecules enabled by enantioselective optical forces in integrated nanophotonic circuits
CHIRALFORCE aims to revolutionize enantiomer separation for drug discovery using silicon-based integrated waveguides and chiral optical forces for rapid, cost-effective processing.
Ultrafast molecular chirality: twisting light to twist electrons on ultrafast time scale
The ULISSES project aims to develop efficient all-optical methods to study and control chiral molecular interactions and electron dynamics using tailored laser polarization techniques.
Nanohelicoid metamaterials templated by cellulose nanocrystals with end-tethered polymers
The CELICOIDS project aims to develop a new class of chiral metamaterials using cellulose nanocrystal-based liquid crystals to enhance chiral light-matter interactions for advanced applications.