Early warning of future rapid Arctic sea ice loss
ArcticWATCH aims to develop an early warning system for predicting rapid Arctic sea ice loss, utilizing diverse data sources to assess impacts and enhance climate observation strategies.
Projectdetails
Introduction
The Arctic is currently transitioning toward a new climatic state that will be characterized by seasonally sea-ice-free conditions almost every year from the 2050s, with widespread ecological, climatic, and societal consequences. There is growing evidence that the future summer sea ice retreat will not occur at a constant rate. Indeed, climate model simulations are suggestive of pronounced sub-decadal fluctuations on top of the long-term trend, leading to periods of relative stability followed by abrupt sea ice decline in hardly 3-5 years. A lot remains to be understood regarding the precursors, mechanisms, predictability, and impacts of these rapid events. In particular, it is unclear how close we might be to the next one.
Project Objective
The overall objective of this project, ArcticWATCH, is to build an integrated early warning system that alerts on the possibility of rapid Arctic sea ice loss for the following summer up to five years. This system will provide annually updated assessments and will synthesize multiple lines of evidence harvested from various data sources (pre-existing and generated during the project), including:
- Climate model projections
- Initialized climate model and machine-learning-based predictions
- Satellite observations
- Climate reconstructions
Methodology
By introducing innovative targeted numerical experiments, ArcticWATCH will also identify the new pathways of sea ice predictability in a warmer world. This will provide evidence-based guidance regarding the design of the Arctic observing system for the next 30 years.
Environmental Impact
Finally, ArcticWATCH will make a leap forward in depicting environmental impacts during and after rapid sea ice loss events, from short (Arctic heatwaves and precipitation extremes) to long (interactions with the Arctic and North Atlantic oceanic circulation) timescales.
Hypothesis
The hypothesis that, after a decade of relatively stable conditions, Arctic sea ice is poised for an abrupt decline before 2030, will be paid utmost attention.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.456.652 |
Totale projectbegroting | € 1.456.652 |
Tijdlijn
Startdatum | 1-1-2023 |
Einddatum | 31-12-2027 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- UNIVERSITE CATHOLIQUE DE LOUVAINpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Forecasting climate surprises on longer timescalesDevelop a novel probabilistic methodology and Fast Earth System Model to forecast climate surprises from ice-sheet and AMOC collapse over centuries to millennia, enhancing long-term climate projections. | ERC COG | € 1.976.300 | 2023 | Details |
Resilient northern overturning in a warming climateROVER aims to investigate how increased ocean heat loss from receding sea ice may enhance dense-water formation in the Arctic, potentially stabilizing the AMOC amid climate change. | ERC COG | € 3.000.000 | 2024 | Details |
Into the Blue - Resolving past Arctic greenhouse climateThe i2B project aims to investigate past warmer Arctic climates to understand the implications of a blue Arctic on global climate and society through a collaborative, interdisciplinary approach. | ERC SyG | € 12.487.730 | 2024 | Details |
Forecasting climate surprises on longer timescales
Develop a novel probabilistic methodology and Fast Earth System Model to forecast climate surprises from ice-sheet and AMOC collapse over centuries to millennia, enhancing long-term climate projections.
Resilient northern overturning in a warming climate
ROVER aims to investigate how increased ocean heat loss from receding sea ice may enhance dense-water formation in the Arctic, potentially stabilizing the AMOC amid climate change.
Into the Blue - Resolving past Arctic greenhouse climate
The i2B project aims to investigate past warmer Arctic climates to understand the implications of a blue Arctic on global climate and society through a collaborative, interdisciplinary approach.