Design of Nucleic Acid-Templated Ordered Protein Assemblies
This project aims to develop nucleic acid-templated protein assemblies using innovative approaches to control their size, shape, and functionality for potential applications in living cells.
Projectdetails
Introduction
Here I propose to create a new class of designed nanomaterials that will combine the advantageous features of protein design and DNA nanotechnology: nucleic acid-templated protein assemblies. I propose three different approaches that all utilize the addressability of nucleic acids on the nanometer to micrometer length scale to control size, shape, and composition of designed protein assemblies.
Approach One
In the first approach, the structural and mechanical properties of the assembly will be defined by the protein components, while the nucleic acid component serves merely to define the dimensions of the assembly and to introduce addressability to an otherwise symmetric, repetitive assembly.
All components, including the nucleic acid template, can be genetically encoded, potentially enabling assembly of entire nanoparticles inside living cells.
Approach Two
The second approach uses more complex nucleic acid templates, such as DNA or RNA nanostructures, to control size, shape, and addressability of two- or three-dimensional protein assemblies.
- The shape of the final protein assembly reflects the shape of the templating nucleic acid nanostructure.
- The protein assembly can be viewed as a coating that adds rigidity, stability, and, crucially, biological functionality to the template nanostructure.
Both approaches one and two are amenable to library-scale screening by coupling size and shape of the particles as well as patterning of functional domains (“phenotype”) to the sequence of the nucleic acid template (“genotype”).
Approach Three
In a third approach, the nucleic acid is not incorporated into the final assembly, but merely serves as a “mold” to define size and composition of a protein assembly.
A single DNA origami mold could thus “catalyze” the assembly of many nanoparticles, circumventing potential scalability bottlenecks from approach two.
Conclusion
These assemblies use the synergy between DNA nanotechnology and protein design to achieve properties that would not be accessible to either technology alone.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.711 |
Totale projectbegroting | € 1.499.711 |
Tijdlijn
Startdatum | 1-3-2024 |
Einddatum | 28-2-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Electrically driven DNA-origami-based machinesThis project aims to develop advanced artificial molecular machines using DNA origami and electromechanical actuation for precise control and functionality, potentially revolutionizing nanoscale engineering. | ERC COG | € 1.999.318 | 2022 | Details |
Computation driven development of novel vivo-like-DNA-nanotransducers for biomolecules structure identificationThis project aims to develop DNA-nanotransducers for real-time detection and analysis of conformational changes in biomolecules, enhancing understanding of molecular dynamics and aiding drug discovery. | EIC Pathfinder | € 3.000.418 | 2022 | Details |
Functional Nanoscale TherapeuticsDevelop functional hybrid nanoscale medicines to enhance intracellular delivery of mRNA and combat nanoscale pathogens, aiming for advanced therapies against diseases like cancer. | ERC ADG | € 2.499.796 | 2024 | Details |
DNA-encoded REconfigurable and Active MatterThe project aims to develop DNA-encoded dynamic principles to create adaptive synthetic materials with life-like characteristics and multifunctional capabilities through innovative self-assembly and genetic programming. | ERC ADG | € 2.496.750 | 2023 | Details |
Electrically driven DNA-origami-based machines
This project aims to develop advanced artificial molecular machines using DNA origami and electromechanical actuation for precise control and functionality, potentially revolutionizing nanoscale engineering.
Computation driven development of novel vivo-like-DNA-nanotransducers for biomolecules structure identification
This project aims to develop DNA-nanotransducers for real-time detection and analysis of conformational changes in biomolecules, enhancing understanding of molecular dynamics and aiding drug discovery.
Functional Nanoscale Therapeutics
Develop functional hybrid nanoscale medicines to enhance intracellular delivery of mRNA and combat nanoscale pathogens, aiming for advanced therapies against diseases like cancer.
DNA-encoded REconfigurable and Active Matter
The project aims to develop DNA-encoded dynamic principles to create adaptive synthetic materials with life-like characteristics and multifunctional capabilities through innovative self-assembly and genetic programming.