SubsidieMeesters logoSubsidieMeesters
ProjectenRegelingenAnalyses

Deciphering the microglia-neuron interactions in human Alzheimer's disease

This project aims to elucidate how human microglia contribute to neuronal toxicity in Alzheimer's disease using a pioneering xenograft model to explore their interactions and secretome.

Subsidie
€ 1.500.000
2023

Projectdetails

Introduction

The goal of this project is to decipher the exact cellular and molecular mechanisms by which human microglia transduce toxicity to neurons in Alzheimer's disease (AD). Genetics revealed that microglia are one of the central players in the pathogenesis of AD.

Background

I and others have characterized the phenotypic response of microglia in AD using transcriptomic and epigenetic tools. Nevertheless, it is yet to be defined how microglia communicate with other cells in the brain, by which mechanism they lead to neuronal alterations, and what the particular role of different microglial activation states is in this process.

Research Focus

I will investigate the two major functional outputs of microglia:

  1. Physical interaction with synapses
  2. Release of inflammatory factors that induce neuronal dysfunction and degeneration in AD.

Technical Challenges

Determining the role of human microglia in AD comes with technical challenges, including:

  • Lack of homology between mouse and humans
  • Limited expression of AD risk genes in mouse microglia.

Methodology

I will use a human microglia xenograft model I pioneered where iPSC-derived cells are transplanted into the mouse brain, and in which they adopt a brain resident phenotype and can be exposed to amyloid-β plaques.

I plan to combine xenotransplantation of genetically engineered iPSC-derived microglia and neurons with state-of-the-art strategies to define:

  • The human microglia-synapse protein interactome
  • The cell-specific proteome/secretome.

Objectives

I aim to:

  1. Define the surface protein interactome between human microglia and mouse synapses in vivo.
  2. Co-transplant human microglia and human neurons in the mouse brain to explore human to human specific aspects of this interaction.
  3. Investigate the human microglia specific secretome in AD.

Conclusion

This project will be the first of its kind to directly study the role of human microglia in the AD brain at cellular and molecular levels, opening new avenues for the development of new therapeutics and biomarkers to tackle the disease.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.500.000
Totale projectbegroting€ 1.500.000

Tijdlijn

Startdatum1-1-2023
Einddatum31-12-2027
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • VIB VZWpenvoerder

Land(en)

Belgium

Inhoudsopgave

European Research Council

Financiering tot €10 miljoen voor baanbrekend frontier-onderzoek via ERC-grants (Starting, Consolidator, Advanced, Synergy, Proof of Concept).

Bekijk regeling

Vergelijkbare projecten binnen European Research Council

ProjectRegelingBedragJaarActie

Window to the brain: a game changer in the discovery of human neuronal circuitry, cellular heterogenicity and biomarker profile indicative of early Alzheimer's disease -related pathology

The project aims to investigate how specific microglial subpopulations impair neuronal functions in early Alzheimer's pathology using unique human brain samples and advanced techniques to identify novel biomarkers.

ERC Consolid...€ 1.998.389
2022
Details

Microglia As conTroller of braIn metaboLism During Aging

This project aims to investigate how microglia, via the Trem2 gene, influence hypothalamic metabolism and energy homeostasis, with potential implications for treating immunometabolic dysfunction.

ERC Advanced...€ 2.500.000
2023
Details

Deciphering Alzheimer’s disease molecular subtypes to advance treatment development.

This project aims to identify Alzheimer's disease subtypes through CSF proteomics to develop tailored treatments and theragnostic tools linked to cognitive decline and genetic factors.

ERC Consolid...€ 2.999.934
2025
Details

TREM2 MICROglia ENGENEering for treating dementiaS (TREM2MICROENGINES)

TREM2MICROENGINES aims to restore TREM2 expression in microglia of Alzheimer's and Nasu–Hakola disease patients to enhance neuroinflammation response and reduce amyloid-β accumulation.

ERC Proof of...€ 150.000
2022
Details

Microglia engineering and replacement to treat brain disease

The ReplaceMi project aims to develop a translatable strategy for replacing dysfunctional microglia with healthy progenitors to treat neurodegenerative diseases through innovative technologies.

ERC Consolid...€ 2.000.000
2023
Details
ERC Consolid...

Window to the brain: a game changer in the discovery of human neuronal circuitry, cellular heterogenicity and biomarker profile indicative of early Alzheimer's disease -related pathology

The project aims to investigate how specific microglial subpopulations impair neuronal functions in early Alzheimer's pathology using unique human brain samples and advanced techniques to identify novel biomarkers.

ERC Consolidator Grant
€ 1.998.389
2022
Details
ERC Advanced...

Microglia As conTroller of braIn metaboLism During Aging

This project aims to investigate how microglia, via the Trem2 gene, influence hypothalamic metabolism and energy homeostasis, with potential implications for treating immunometabolic dysfunction.

ERC Advanced Grant
€ 2.500.000
2023
Details
ERC Consolid...

Deciphering Alzheimer’s disease molecular subtypes to advance treatment development.

This project aims to identify Alzheimer's disease subtypes through CSF proteomics to develop tailored treatments and theragnostic tools linked to cognitive decline and genetic factors.

ERC Consolidator Grant
€ 2.999.934
2025
Details
ERC Proof of...

TREM2 MICROglia ENGENEering for treating dementiaS (TREM2MICROENGINES)

TREM2MICROENGINES aims to restore TREM2 expression in microglia of Alzheimer's and Nasu–Hakola disease patients to enhance neuroinflammation response and reduce amyloid-β accumulation.

ERC Proof of Concept
€ 150.000
2022
Details
ERC Consolid...

Microglia engineering and replacement to treat brain disease

The ReplaceMi project aims to develop a translatable strategy for replacing dysfunctional microglia with healthy progenitors to treat neurodegenerative diseases through innovative technologies.

ERC Consolidator Grant
€ 2.000.000
2023
Details

Vergelijkbare projecten uit andere regelingen

ProjectRegelingBedragJaarActie

Towards the clinical implementation of TREM2 Microglia Engineering for treating DementiaS

TREM2MEDS aims to transition a novel gene therapy for Alzheimer’s and Nasu-Hakola Diseases from preclinical validation to a Phase I clinical trial, targeting TREM2 dysfunction in microglia.

EIC Transition€ 2.499.721
2024
Details
EIC Transition

Towards the clinical implementation of TREM2 Microglia Engineering for treating DementiaS

TREM2MEDS aims to transition a novel gene therapy for Alzheimer’s and Nasu-Hakola Diseases from preclinical validation to a Phase I clinical trial, targeting TREM2 dysfunction in microglia.

EIC Transition
€ 2.499.721
2024
Details

SubsidieMeesters logoSubsidieMeesters

Vind en verken subsidieprojecten in Nederland en Europa.

Links

  • Projecten
  • Regelingen
  • Analyses

Suggesties

Heb je ideeën voor nieuwe features of verbeteringen?

Deel je suggestie
© 2025 SubsidieMeesters. Alle rechten voorbehouden.