Deciphering the microglia-neuron interactions in human Alzheimer's disease
This project aims to elucidate how human microglia contribute to neuronal toxicity in Alzheimer's disease using a pioneering xenograft model to explore their interactions and secretome.
Projectdetails
Introduction
The goal of this project is to decipher the exact cellular and molecular mechanisms by which human microglia transduce toxicity to neurons in Alzheimer's disease (AD). Genetics revealed that microglia are one of the central players in the pathogenesis of AD.
Background
I and others have characterized the phenotypic response of microglia in AD using transcriptomic and epigenetic tools. Nevertheless, it is yet to be defined how microglia communicate with other cells in the brain, by which mechanism they lead to neuronal alterations, and what the particular role of different microglial activation states is in this process.
Research Focus
I will investigate the two major functional outputs of microglia:
- Physical interaction with synapses
- Release of inflammatory factors that induce neuronal dysfunction and degeneration
in AD. Determining the role of human microglia in AD comes with technical challenges, including lack of homology between mouse and humans, and limited expression of AD risk genes in mouse microglia.
Methodology
I will use a human microglia xenograft model I pioneered where iPSC-derived cells are transplanted into the mouse brain, and in which they adopt a brain resident phenotype and can be exposed to amyloid-β plaques.
I plan to combine xenotransplantation of genetically engineered iPSC-derived microglia and neurons, with state-of-the-art strategies to define the human microglia-synapse protein interactome as well as the cell-specific proteome/secretome.
Objectives
I aim to:
- Define the surface protein interactome between human microglia and mouse synapses in vivo
- Co-transplant human microglia and human neurons in the mouse brain to explore human-to-human specific aspects of this interaction
- Investigate the human microglia specific secretome in AD
Significance
This project will be the first of its kind to directly study the role of human microglia in the AD brain at cellular and molecular levels, opening new avenues for the development of new therapeutics and biomarkers to tackle the disease.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.500.000 |
Totale projectbegroting | € 1.500.000 |
Tijdlijn
Startdatum | 1-1-2023 |
Einddatum | 31-12-2027 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- VIB VZWpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Window to the brain: a game changer in the discovery of human neuronal circuitry, cellular heterogenicity and biomarker profile indicative of early Alzheimer's disease -related pathologyThe project aims to investigate how specific microglial subpopulations impair neuronal functions in early Alzheimer's pathology using unique human brain samples and advanced techniques to identify novel biomarkers. | ERC COG | € 1.998.389 | 2022 | Details |
Microglia As conTroller of braIn metaboLism During AgingThis project aims to investigate how microglia, via the Trem2 gene, influence hypothalamic metabolism and energy homeostasis, with potential implications for treating immunometabolic dysfunction. | ERC ADG | € 2.500.000 | 2023 | Details |
TREM2 MICROglia ENGENEering for treating dementiaS (TREM2MICROENGINES)TREM2MICROENGINES aims to restore TREM2 expression in microglia of Alzheimer's and Nasu–Hakola disease patients to enhance neuroinflammation response and reduce amyloid-β accumulation. | ERC POC | € 150.000 | 2022 | Details |
Microglia engineering and replacement to treat brain diseaseThe ReplaceMi project aims to develop a translatable strategy for replacing dysfunctional microglia with healthy progenitors to treat neurodegenerative diseases through innovative technologies. | ERC COG | € 2.000.000 | 2023 | Details |
Window to the brain: a game changer in the discovery of human neuronal circuitry, cellular heterogenicity and biomarker profile indicative of early Alzheimer's disease -related pathology
The project aims to investigate how specific microglial subpopulations impair neuronal functions in early Alzheimer's pathology using unique human brain samples and advanced techniques to identify novel biomarkers.
Microglia As conTroller of braIn metaboLism During Aging
This project aims to investigate how microglia, via the Trem2 gene, influence hypothalamic metabolism and energy homeostasis, with potential implications for treating immunometabolic dysfunction.
TREM2 MICROglia ENGENEering for treating dementiaS (TREM2MICROENGINES)
TREM2MICROENGINES aims to restore TREM2 expression in microglia of Alzheimer's and Nasu–Hakola disease patients to enhance neuroinflammation response and reduce amyloid-β accumulation.
Microglia engineering and replacement to treat brain disease
The ReplaceMi project aims to develop a translatable strategy for replacing dysfunctional microglia with healthy progenitors to treat neurodegenerative diseases through innovative technologies.